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Compatibility of systems
of super differential equations*
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Abstract. 4 precise definition of the compatibility of systems of super differential
equations is given, called Grobner  integrability, which includes the involurive-
ness as a special case. Several practical criterions of Grobner integrability are given,
one of which generalizes the formal part of the Cartan-Kdhler theorem.

INTRODUCTION

1. Recently in the theory of supergravity field equations are written down
using the so called superspace formalism: fields are superfunctions on a super-
space and the equations are systems of super differential equations. Although
many concrete systems of super differential equations have been already deeply
analyzed, there seems to be no general theory comparable to the formal theory
of systems of differential equations, which is by now a completed theory
both theoretically and practically.

2. The remarkable novelty of systems of super differential equations is
that it has more compatibility conditions than usual systems of differential
equations. For example even a single super differential equation has nontrivial
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compatibility conditions and hence can be incompatible. This fact is actually
one of the essential power of the concept of systems. of super differential
equations. For example Witten ([7]) uses this fact to express solutions of the
Yang-Mills equations as certain vector bundles over super spaces.

3. In this paper we consider svstems of super differential equations, and give
several criterions for their compatibility and when they are compatible give
a method to describe the space of formal solutions.

4. The key concept is the formal Grobuer integrability of systems of super
differential equations.

The introduction of this notion is strongly influenced by the notion of the
Grobner basis in the computer algebra theory (cf. [1] for example). In fact
the analogue of the Grobner basis for the basis of differential ideals in differential
super polynomial algebra is exactly the formal Grébner integrability of systems
of'super differential equations. Thus we might as well say that a system of super
differential equations constitute a Grobner basis of the differential ideal ge-
nerated by it instead of saying that it is formally Grébner integrable.

When a system of super differential equations is formally Grébner integrable,
we know all about that system, in other words, there are no unexpected conse-
quences of it. Thus for example it is easy to judge whether a differential relation
among the unknown functions is a consequence of that system. This allows
theoretically automated theorem proving in the theory of super differential
geometry in the line of [8]. Further we can also solve the super differential
elimination problem easily.

We should remark here that the formal Grobner integrability of systems of
super differential equations depends on the order introduced on the set of partial
derivatives. and hence is not a concept invariantly defined. However this is rather
an advantage when we study concrete systems of super differential equations.
For example when we want to solve a super differential elimination problem
we can and must choose an appropriate order.

The framework of the formal geometry in the sense of Gelfand (cf. [2] for
example) is essential for the formulation of the concept of formal Grobner

integrability.

5. Since the formal Grébner integrability consists of infinite number of condi-
tions, the main problem is to give practical criterions for the formal Grébner
integrability of systems of super differential equations.

The main purpose of the present paper is to give several such criterions, which
might be called formal Cartan Kéhler theorems.
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The first criterion asserts that the formal Groébner integrability of a system
of super differential equations can be established checking only the minimal
set of compatibility conditions. When the system consists of the usual differential
equations, then this result is essentially the same as given classically by Riquier,
Janet, et al. (cf. [4]).

We remark that these results are sufficient for the formal geometric study
of concrete super differential equations (cf. [6]) even for the pure even case.

The second one is a more refined one, based on the notion of the involutiveness
of systems super differential equations. This criterion is very close to the usual
Cartan Kihler theorem except that the notion of the involutiveness adopted
in this paper depends on the choice of coordinates. I have not yet been able
to rephrase this involutiveness as the acyclicity of the super Koszul complex
associated with the system.

6. The prolongation theorem in the sense of Cartan-Kuranish is not treated
in this paper. However we remark that a naive version of it is rather obvious:
when a given system of super différential equations is not formally Grobner
integrable, we add to it the new equations which are obtained by checking the
minimal compatibility conditions until the system is formally Grébner integrable.
When adding the new equations does not destroy the regularity, it is easy to
see that this process terminates in a finite number of steps.

7. We comment here on the two simplifications assumed in this paper.

We consider only systems ot super differential equations on superdomains.
This enables us not only to concentrate on the essential features of the problem
of the compatibility but also to avoid the difficult choice of various formula-
tion of supermanifolds. It doses not seem difficult to generalize the results of
this paper in global setting, once one has chosen a formulation of super-
manifold.

Secondly we consider only regular systems of super differential equations.
This is inevitable in order to avoid the various difficult questionsinvolving differ-
ential ideals, which hcwever should be taken up some day. On the other hand
this restriction is not so inappropriate in the application point of view since
most of the systems encountered in physics are regular.

8. The outline of this paper is as follows: in section one, we fix notations
of super multi-indices, which play important role throughout this paper.

In sectiontwo, we review basic concepts on super spaces necessary for later
parts. We consider general superfunctions witch coefficients in arbitrary
superalgebra, which seems to be necessary to treat general super differential
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equation. However the reader can assume the coefficients super algebra G to be
the trivial algebra IR for the first reading. We remark that the notations used there
are shitely unusual but seems to make local arguments quite concise even when
confined to the purely even case.

The simple lemmas in the subsection 3.4 give us powerful tools to manipulate
regular ideals, which substitute in a sence the difficult delicate arguments neces-
sary for manipulating general ideals.

Section four defines super differential equations in terms of the jet superspace
and section five introduce the key concept of formal Groébner integrability.

Section six gives a few sufficient conditions for the formal Grober integrabili-
ty. The subsection 6.1 is crucial for the statement of such conditions.

The final section seven gives a refined version of the sufficient conditions.
which is in pure even situation reduced to the formal part of the usual Cartan-
Kéahler Theorem as formulated by Goldschmidt ([3]).

9. Finally we remark that even in the pure even case, our approach gives a
new simpler method of analyzing concrete systems of differential equations.
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NOTATIONS
A%:={b; b <a}, when (4, <) is an ordered set.
Al = g U {a}, when (4, <) is an ordered sct.
A U B: the disjoint union of sets A4 and B.
B the complement of a subset B.
8= 1ifi=j =0 if i+].

| 1| . = the number of elements of a set /.

Nn).={1,2,...,n}.
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IR: = the field of real numbers.
Z : = the ring of integers.

Z, :={n€Z;n=0}

Z,, :={n€Z;n>0}

z% =7z e}

z,:={0,1} =zZ2Z.

More specialized notations and terminologies frequently used are listed below
according to the place where they are first introduced (A4 and I stand for Zz'sets

and G for a superalgebra):

1.1.
1.2.
1.3.
1.4.

2.1.

2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

3.1.
3.2.

3.3.
34.

Z,-set N(m [ 1),

sw’(A), sw(d).

m(A, I), admissible order, Za (a €4).

sm, (A4, I), sm(,)(A, I, pr(E) (ZCsmA, D), UBV.

augmentation, augmented superalgebra, admissible augmented superalge-
bra, G-superalgebra

G-supermodule, ideal of G, G .X.

pi(W), pt(W) (W: a submodule of a free G-supermodule), regular subspace
of a free Gsupermodule.

A(G) (A : a Z,-set), G-point.

R{A], R [4], R[[4]], P(G): A(G) » G (PER[A]).
F(A4), F(A),F (4Y),

d, =9/dZ, : F(4)~> F_(4) (a€A).

T (F . (4) > F (A7) ®R[[4]].

ev, () > G §EAG).

FG (4, I), a smooth supermap with coefficients in G from A4 to 1.
F* :FG(I)”FG(A) (FEFG(A, n).

superdiffeomorphism.
F.(4, B),FX(4,B) (B C A), regular subset of F (4),
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4.1.

4.2.
4.3,

5.1.
5.2.

6.1.

6.2.
6.3.

7.1.
7.2.
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E(p) (p € FOG (4, B)), pi(E), regular ideals.

J=JADJ =J(ADF =F(J)u,WEswA,I),

J:FA, D>FA,JA, D) B CI.

a system of super differential equation, solution, Sol( &), é”l ~ é”z.
regular system of super differential equations (¢) (¢ € FO(J ), pi( &)
( & :a system of super differential equations).

d F(J(4, D)~ F(J(A, D) (@€A).

o, ( &), formally Grébner integrable.

ml t(M) (M €sm(A, ), ml t(A, =), Basis(Z)
(2 Csm(A)), prim(T), 1-acyclic.
Vi (M € p_(=)), precompatible.

good subset, c(u), class of u, A(u).

involutive

0,,0.Symb (&).

§1. SUPERINDICES
1.1. 22 -sets

let A be aset. Amap p : 4 —> Z, is called a Z,-grading of 4. A set endowed

with a Z,-grading is called a Z,-set. Let (4, p) be a Z,-set. We put 4, = p k)
(k€ Z,). We often write d = pla).

A subset B of a 22 set (A, p) is considered as a Zz-set by the Zz—grading

Plg
If (4,. p) and (4,, p,) are Z,-sets, we consider the product A, x 4, and the
disjoint union Al I A2 as Z,-sets by the Zz-gradings defined respectively by

and

p((al,az)): pl(a1)+p2(a2), for a; EA:’ i=1,2)

p]Ai:pl. for i=1,2.

The set N(m) will be regarded as a Z,-set by



COMPATIBILITY OF SYSTEMS OF SUPER DIFFERENTIAL EQUATIONS 175

N@m)g = N(m), Nm)y=¢.
We denote by N(n) the Z,-set defined by

N = N(n), Nnyg = ¢
and put

N(m | n): = N(m) U N(n).

From now on we fix a finite Z,-set (4, p).

1.2. Set of words
Let 4 be a Z,-set. We define
wo(4) 1 ={g},
w (4):=A", for r>0,
w(d) =17 (w (4).
We identify A with wl(A). The element (al, e, ar) of wr(A) is denoted
simply by @, ... a,. The juxtaposition defines a multiplication w(A4) x w(A) ~

— w(A). The product of v and w is denoted by vw.
Let § ={{,:a €A} be aset of letters. We define

§¢ =1,

§w:=§w(1)...§w(r) for w€E€w (4).

Remark (1.2.1). In explicit calculation, it is often confusing to express words
on A directly, e.g., when A consists of numbers. In such cases, it is convenient
to introduce letters indexed by A, e.g., {z,;a € A} and express a word w on 4
by the corresponding monomial z% . For example, the word abbc is expressed
by the monomial zazizc. ]

Forw = (w(l),...,w@r)EwA)andk € ZZ, define
N(w, k) ={i EN(r); w(i) €A, },
£ (w):= *N(w, K'),
Rw): = G (w) + &(w) =r.

Suppose from now on that A4 is totally ordered.
For w € w(4) with QT: = QT(W) > 0, we denote by P, the order preserving
bijection from N(2;) to N(w, 1.



176 T. TSUJISHITA

The permutation group Sr acts on wr(A) from the right by
wr = w(ml), ...,w(mr)),
forw € wr(A), T e Sr. For (w, m) € wr(A) X Sr, define
1 if QT(W) =0,

sgn(w, ). =
sgn(p=!

w.nm

° pw) if QT(W) >0.
By definition
sgn(w, ™ 7r2) L= sgn(w.ﬂ1 LT, ) sgn (w, T, ),

for we€w (4), m 7, € Sr.
Define »—VO(A) T=wy (A) and, for » >0,

W (A4) ={w Ewr(A); wiD<...<w(@).
Put
W(A) 1= U= W (A).

Obviously we have the following lemma.

LEMMA (1.2.2).
(i) The action (w, m) > w.n induces a surjection from W'r(A) X Sr to wr(A ).
(i) The condition w.m =w'.mw"  for (w, 7). (W', 1) €W (4) x S implies w =
=w andsgn(w, m) = sgn(w', 7'): =
We define sw, (4) = W (4) and, for >0,
sw (4) ={wEw (4); Hiw@ =a}<1 forall a €Aq}.
We put
sw(d) : = U:":O swr(A),
W (A) 1= sw (4) N W(A),

SW(A) :=swAlA)NwA).

1.3. Multi-indices
Define
m(A) = Map(A, Z+ ).
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For u € m(A), we put
ful =2, u@,
= EaeA, u(a) mod 2,
ul= HaeA u(a)!.
We consider m(4) as a Z,-sets by the Z,-grading 4~ f.
Define
m(A).={u€m(A); [u|=r}, for r€Z,,
m(r)(A) i={pE€m); |n|<r), for r€Z}.
Foreacha € A4, we define 5, €m(4) by Ba(b) = Sab.
Define u : w(4) - m(4) by u(¢) :=0 and
pw) = =5, 8,

for w=w(l)...w(R). Obviously | u(w) | = &w).
Suppose A is totally ordered.

LEMMA (1.3.1). The restriction u| ) is a bijection. .

We shall denote the inverse of u| 7 (4) by w: m(A)->w(A).
Suppose {z,:a € A} is a set of letters indexed by A. For p € m(4), we define
z¥:=2z%{#) Note that this depends on the order of 4 if A7 is not empty.

Remark (1.3.2). When A is totally ordered, the bijection w from m(A4) to w(A4)
enables us to identify a multiindex u with the monomial z¥ ) when{z , a € A}
is a set of letters (cf. Remark (1.2.1)). For example, suppose A ={1, 2, 3} with the
standard order and x, y, z are letters corresponding to 1, 2, 3 respectively. Then a
multi-index m is identified with the monomial x™ (1) ,m (2);m (3} .

For u, p’ € m(A4), we define the elements 4 + 4’ of m(4) by
(0 + 1)) : = p@) + p'(a),

for a€ A.
let/bea Zz-set. Define

m(A, I) :=m(Ad) x I,

with the product Zz-grading. For M € m(A, I), we write its m(4) — and ] —
components respectively by u(M) and i(M). When I consists of a single even
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element, we identify m(4, I) with m(A).
We put

mr(A, D= mr(A) x 1,
m(r)(A, DH:= m(r)(A) x 1.

For u€m(4) and M €m(A, I), we put
M+ M=+ uM), i(M).

For subsets U of m(A4) and V of m(4, I), we put
U+V:={u+v:u€UveEV}

Let = be a subset of m(A4, I). For r € Zj , we define
P (5) i=m(4) + E.

We define a partial order < in m(4, I) by
M<M<iM)=iM') and M €p_ M).

A linear order « < » in m(A, 1) is called admissible if it satisfies the following
three conditions:

(i) M <M implies M <M,
(ii) M<M implies p+M<u+M for uEmA4),
(iii) ‘ every strictly decreasing sequence of elements is of finite length,

i.e., « <» is a well order.

Example (1.3 13). Suppose A and ] are totally ordered.

(i) The standard linear order of m(A,]) is the pull back of the lexicographical
ordering of Z+ x m(A) x I by the mapping M — ( ] u(M)] , u(M), i(M)). Obviously
this order is admissible.

For example, suppose A = {1, 2, 3} with the standard order and x, y, z are
letters corresponding to 1, 2, 3 respectively. Then the sequence of elements
of m(4) in the ascending order starts as follows (cf. Remark (1.3.2)).

1,x, 9,z

x2 xy, xz, y?, yz, 2%,

3

3 z, xyz,xyz,xzz,y3,yzz,y22,z s

x ,x2y'x2

(ii) Let « < » be the order of m(A4, I) defined as follows:
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MM if @) pM) | <|pM)|,
or (b) |uM)|=|mM)| and pM)>pM",
or (¢) u(M) = uM") and M) < i(M').

Obviously this order is admissible.
For example, suppose that 4 is as in (i) but suppose that the letters corre-
sponding to 1, 2, 3 are now z, y, x. Then the ascending sequence starts as follows:

1,x,y,z,

x2, xy, %, xz, yz, 22,

3 2 3

X ,xzy, xy2, y3, X"z, xyz, yzz, xzz, xzz, yz2, z7,

1.4. Super multi-indices

Let

sm(d) :={mEm(4);m@)=0 or1 for a EAT},
sm(A4, ) : =sm(A) x I,

We put
sm (4) :=m (4) N sm(4),
SM(A),,y 1 =m(A) N sm(4),
sm (A, I):=m (A, DO sm4, D),
sm(A, D,y :=m (A, 1) Nsm(d, ),
sm(4, D2 .= m(4, D N sm(A, ).

Define for a subset E of sm(A, I) and r € Z_’: R
p,(E) 1= p,(Z) Nsm(A, I).

The set p_ (£) will be denoted simply by p(=) (cf. Example (6.1.2)).
For subsets U of sm(A4) and = of sm(4, 1), we write

UB =Z.=U+ E)NsmA, ).
Then
smr(A, nH= smr(A) i sm, A4, D.
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A subset = of sm(A4, I)is called an sm-subset if

sm(4) B ECE,

s

ie., p (5)C E,
Let w.: m(A)—> w(A) be the bijection defined in the previous section. Obvio-
usly we have

LEMMA (1.4.1). The restriction

w sm4) 2smi(A) - sw(A)

is bijective. n

§2. SUPERFUNCTIONS
2.1. Superalgebras
AZ, -graded IR-algebra G = GO ® G1 endowed with 1 is called a superalgebra
if
(1) ab = (— 1% ba

holds for homogeneous @ and b. Here @ = k for a EAK. The real field R will be
considered as a superalgebra with IRs-= IR and IRy = (0). The G -component ofa
is denoted by a, (k€ Z,).

A Z-graded algebra G = Sicn

Gl., with 1 and satisfying (1), where @ =i mod
2 fora € Gi, will be considered as a superalgebra by

G =2, G (KGZZ)

K imod 2=k i

let G and G' besuperaigebras. A homomorphism ¢ : G =~ G' is an algebra
map such that p(1) = 1 and ¢(G,) C G"( (k € Zz)' A homomorphism G - R
is called an augmentation of G. The pair (G, €) is called an augmentated superal-
gebra. Aun augmented superalgebra (G, €) is called admissible if (Ker e)N =0
for some N € Z+ .

Let G' and G” be superalgebras. The Z,-graded algebra G defined by G, =
=9 i GL.® G:,. with the product

K'+ &
@ea)B'eb"y=(—1¥"?4abead"b"
is a superalgebra, called rhe tensor product of G'and G".

A superalgebra G’ endowed with a homomorphism ¢ : G > G’ is called a G-su-
peralgebra.
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2.2. Supermodules

Let G be a superalgebra. Let V = V5 © V—l- be a Zz-griaiied left G-module.
The algebra G acts on V also from the right by v-g= (— 1)"8g v. We say simply
Vis a G-supermodule.

Let G’ and G” be superalgebras. Let ¥ be a G’ supermodule. Then V&  G”
is a G" ® G'supermodule by the action

(feg)-weh) = (—1¥"f vegh
(fE€EG g hE€G", vEV). Similarly G"®  Visa G"® G'supermodule.
let V = V0 ® Vl be a Zz-graded IR-vector space. Then for a superalgebra
G, the tensor product G ® V is a Gsupermodule, called a free G-supermodule
ofrank(r0 \ ), wherer, 1= dimp V. (KEZ,).
fhe superalgebra G is itselt a G-supermodule. Its G-submodules are called

ideals of G. For a subset X of G, the ideal generated by X is denoted by
G X

2.3. Free supermodules with ordered bases

Let G be a superalgebra and V a supermodule over G
For a subset U of V, the Gsubmodule generated by U is denoted by G.U.
Let I be a Z,-set with a linear order « </ » and

V=28,,Ge.
For v=2 v.e, € V, we put
cfli,v) .= Vs
pi(v) : = max {i; v, # 0},
pt(v) . = Ve (i = pi(v)).
Let W be a G-submoduie. We put
pi(W) . ={pi(w); weEW]CI
pH(W) : = G.{pt(w); w E W},
We say W regular if there exists
{w; i€pi(W)}C W
such that

pt(wz.) =e,.
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2.4. Superspaces
Let A be a Z,-set. For a superalgebra G, we define a set 4A(G) by

AG) 1 ={{:A~>G; §@)EG; for a€A) .

We often write §‘a = {(a). The correspondence 4 : G > A(G) is called the
superspace associated with the Z, -set A. Elements of A(G) is called the G-points
of A. This is a covariant functor from the category of superalgebras and homor-
phisms to that of sets and mappings, i.e., each homorphism f : G -~ G' induces
a map A(f): A(G) > A(G") defined by A(fU) = f o ¢ and satisfies A(f o g) =
= A(f) o A(g) for another homorphism g : G" - G.

Let U be open subset of IR47. For an augmented superalgebra (G, €), we
define

AY(G) : ={{ €A(G); eo §EU).

The correspondence AU G AU(G) is called the superdomain of A with the
body U. This is a covariant functor from the category of augmented superal-
gebras to that of sets. Note that A(R) = R4 and AY(R) = U.

2.5. Superpolynomial algebras

Let 4 be a Z,set. Let IR{4} be the free associative IR-algebra generated
by 4,i.e., R{4}: = @ cw A )IR - w, with the multiplication defined by

ECwEC W= (E, o, Cp Cp)W.

"
W=

Let IR[A] be the quotient of IR{4} by the two-sided ideal generated by {ab —
— (- 1)"bba; a, b € A}. Let Z, denotes the class represented by a. Then we
have obviously

PROPOSITION (2.5.1).

(6)) Z¥'" =sgnw, 1) Z¥ for (w, 1) Ew (4) x Sr,
(i) RiA] =, o4, R-Z¥
= ® csm) R-Z¥. .
Define,
R [4] :=€B#amr(A) R-Z*, for reZ,,

IRr[A] =0 for r <O0.
Then R[A4] = GBr]Rr[A] and IR[A4] isa Z-graded algebra.
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Define
R{(4)) =T, , RI[4],

whose element is called a formal power series of the variable Z and expressed
as f = Zuesm ) f“Z“. The algebra R[[A]] is a superalgebra by the Z,-grading

f=K¢>fM #0 only when I =k,
and the multiplication & = f - g, where

hK =X "fx'gx"'

k=k'+«
Let G be an associative algebra and g : A — G a mapping which satisfies
2(a) g(b) = (— 1% g(b) g(@)

for a, b € A. Then an algebra map ev, :IR[A] — G is uniquely defined by
eug(Zﬂ) =g, fora € A. For P € R[A], we write P(g) : = evg(P). When g, are
nilpotent, ev, can be extended to IR[[A]] in the obvious way.

Example (2.5.2). Let A = A, = {x}and G = R[B] with B = B, ={61, 6,
63 s 04}. Let g € A(G) be defined by
g(6):0162 +6364
and put

Plx) :=exp(x)=2Z x"/n! € R[[4,]] = R[[x]].

ez +
Then

P(6162+0304):=P(g)=1+0102+0304+01620364. s

In particular, for a superalgebra G, there is a map
P(G) . A(G)—- G

for P € R[A] defined by P(GX) : = evs,(P) for § € A(G). The correspondence
P : G+ P(G) is a natural transformation i.e., for each homomorphism f : G = G,
We have fo P(G) = P(G") o A(f).

When Az = ¢, the algebra IR[A] is called the Grassmann superalgebra on
AT’ which has a unique augmentation € defined by €(Z*) = 0 for u % 0. Ob-
viously Ker € is nilpotent.

2.6. Smooth superfunctions

For a set 1, a subset U of R/ is called a primitive open subset if there is a finite
subset J of 7 and an open subset V of R such that
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U={s=¢)ER; ¢, =@ i€NE V)
A function f : U - R is called smooth if there is a finite subset J' such that
JCJ' CIlandf=gonforsomeg € C™ (U,,), where
Up:={§ €RT 5], €V)
and 7 : U — U, is a natural projection. The set of all smooth functions on U
is denoted by C™(U).
Let A be a Z,-set. Let U be a primitive open set of R4 let Gbea superal-

gebra. We define a smooth superfunction on the superspaceAU with coefficients
in G as an element of the superalgebra

FoaY)y:=Ge, C™()® R(4,].

When U =47 we write simply F.(4) = F,.(AY).
G G

Remark (2.6.1). One may assume G = IR without the danger of losing the
essential points of this paper. L

We write an element /€ F . AY)y as
f= Epé.sm (AT)pr“’

with f# € FG (A%) = G ® C7(U). Then fis homogeneous of parity k if and only
iff” + d = « for all u € sm(A7).
A homomorphism ¢ :G — G’ of superalgebras induces

- . U U
F“7 =p el .FG(A )—>FG,(A ).
If A'is a subset of A, there is a natural inclusion map
t :FG(A )—>FG(A)
defined by

(= fZ8y=%

uEsm(A,) ‘u pEsm(A})

i) 2+,

where i : C7 (IRA"O) - C* (R17) is the map induced by the projection R4s —
A=
- R77,

2.7. Partial derivatives
Fora € A, we define
. U U
9, =0/0Z, Fo (4 )= Fo(A4Y)
as follows: when 7 = 0, we put 9, = 1@ 9, ® 1, where 3, : C7 (U) ~ C™ ()
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is the usual differentiation. For @ = 1, we define aa =10l ® 6a, where aa :
lR[AT] ~R[A7] is defined by

=3P _ 1yt
0,2,y Zy ) = TP T Z oy 2

Obviously we have

LEMMA (2.7.1).

- — (14

@) 9,0, =(— 1 3,0, for a, bEA,

(ii) o™ T =sgn(w, MY for (w, m)Ew (A)x 5 . .

2.8. Taylor expansion of smooth superfunction

Let A be Z,set and U a primitive open set of RAs. For f= %
f.® 2" €F (AY), define f€ F(4%) @ R[[A]] by

f=Zcomu )(1/“’!)3” fr®ZhTh
, (ANDaAf © ZMZ*

r"Esm (Ay)

=Z z

T FaemA@pTuesm Ar

where y'=u | , . u' = p| ,_ - Informally, iy, Z) is the Taylor expansion of
o+ 25 ZT) at (», 0) where zZ = (Z,:a € A_). The correspondence 7 e f
defines a homomorphism of superalgebras 7 : F, (4Yy —» FG (A%) ® IR[[A]].
LEMMA (2.8.1). For fE F . (AY),

(G, ehf=0e0)f=(3,f), a€Ag,

(1®ad,) f= (aaf)A, a€As.

Proof. Fora € AT’ we have (1 ® aa) ° T =700,0bviously. Leta €A6. Then
(8,8 1) o 7 =1 03, obviously. We have only to check the equality (@, r =
=(1®3,)r:

(0,0 1)f= Eu(l/u'!) 9,0" fu“ ®Zk

_ , . s
_Eu,ya>l(“a/“!)a“ f“"®Z” a

= ZH (1/# ')a“ fu” ® aaZ“

=(1®3)f qe.d. .

Example (2.8.2). Let Ag ={x}, Ay = {6, n}and put

fx, 0,n) =x?0n.
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Then
f=x’e6n+2xex6n+1ex?on.
We have
(B, e Df=(10d)f =@2x®6n) =2(x06n+1 e6n),

(1®ae)f=(x®n)‘ =x2®n+2x®xn—1®x2n. =

2.9. Value of superfunctions

Let (G, €) be an admissible augmented superalgebra. Then a G-point { of 4V de-
fines a homomorphism

ev, :FG(AU)—>G
as follows: Since §p 1=€o0 §|A_ € U, there is a homomorphism
ev, :F. (A :=G6eC)~G

defined by ev, gof) =gf(§‘0). Since {(a) - €({(a)) is nilpotent fora € A, a ho-
momorphism

€U, =ev,_ .. : R[[A]] =G
is defined. Define then ev, i=mo (ev; ® ev,)or ,wherem :G®G—>G is the

multiplication map.

Example (2.9.1). Let A be the 22 -set of Example (2.8.2) and put
flx, 8,7m) = on.

Let G =IR[B] with B =B, ={¢,, 22,53, g,}Jand § = (2152, 23,24) be a G-point
of A. Then the value of f and ¢ is given by

FO) = flE 5y by E) = (1 + £ 5,68, = £,6, +£,5,6E. @

§3. SUPERMAPS
3.1. Supermaps
Let A and [ be Z,-sets. Let U be a primitive open subset of IR4% . Define
U R U
Fo (A", D . =IF;(A")),

whose elements are called smooth supermaps with coefficients in G from AY to 1
They are given by F = (£ ;1 €1) with Fl. S FG (AU)F When G = IR, we write sim-
ply F =Fp.
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Suppose (G, €) is an admissible augmented algebra. Then an element F of
F(AY, I) induces

F :AY(G)~ I(G)
by
F) 1= (F&); i€ EXG).

When G is augmented by €, the composition I(€) o F define C~ map F : U~
- R%. When V is an open subset of ' R% | we put
Fo(AY, 1"y :={FeF Y , D;FU)c ).

3.2. Superalgebra homomorphisms induced by supermaps

Suppose (G, €) is an admissible augmented superalgebra. Then an F €
FG AY, I) induces a homomorphism

. U
F*:F (D~ F(4Y)
defined as follows: Let € :FG (4Y) > C=(U) be the homomorphism defined by
E(Enesm (47) f/-t ®Z¥) = (e ®I)fO'
Then (Ker &)Y =0, forlarge N. Put
&F 1 = (&F,; i€ J5) € C™UYF,
which defines (8F)* : G ® C(Rk)~ G o CH(U).

Define F— &F :=(F,—€éF,i€DEF, (AY). Since its components are nilpo-
tent, this induces

(F —&Fy* : R[] > F,(4Y).

Finally define F* : = 7 o (( €F)*)®(F — €F)* o 7, where 7 :G ® CT(U) eaFG(AU)
—~F,(4 U} is the multiplication map and G & C=(U) = F (Ag }is regarded as a
subalgebra of FG (AU).

Fs (D> (G @ C(R)) @ R[]
F* (EF)*e (F — EF)*
FeaY)y < (GecCwmeFAY)

Note that F*Z, = F, (i € I). When { is a G-point of the superspace AY,
(F*)E) = fAFQ)).



188 T. TSUJISHITA

Example (3.2.1). Suppose I = [ ={x}, 4 = A, ={0, n}, F, :=0n. Then
F*f = f(0) + f'(0)8n, for an element f of C “(IR).
PROPOSITION (3.2.2). For an element FofFG (AU, D), the identity
aa o F¥ = Eiel(aaFi)F* ° al.

holds for everya€ A.
For the proof, we need the following

LEMMA (3.2.3). Suppose the components of H € F (AY, 1) are nilpotent. Let
H* :R[[I]] - F (AY) be the induced map. Then

0, o H* = Eiel(aaHi)H*o 0
Proof. let w € w (I). Define w; € W]._l(A) and w]f' € Wr_j(A) for j € N(r)
o NI R A g
byw = ij(])w]., and put W= w}.w], € W (A). Then _
(B, c HNZY =3 H” =27_, (- DAYIHY9 H "
=27 (- WO H, ) HY.
(@, H)H* 0 8) Z% = T, (3 HYH*Z!_ (- 1)*]s, . Z")
=3
j

DY@ H Y HY.

qed. =
Proof of Proposition (3.2.2). Put FO=¢r, F* = F—F°. For a € 4z,

and

9,0 F*=3 omoF " o F'"or
=mo(@, el +103)c(F' eF! ")or
=m{(zi€,°((aaF9)ﬁ’*)wl*) (3, ®1)

+Z0(F e (3, F)F' )1 ®d)}or

=Z,0,F+0,F)mo (F'0 F'")or o 0,
=2(8,F)F¥0od,

Fora €4, the assertion can be proved similarly. g.e.d. -
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3.3. Composition of supermaps
Let Al. (i=1,2,3) be 22 -sets. Let (G, €) be an admissible augmented super-
algebra. Then we can define
FG(Az' Ay) x F. (4, A2)|—>FG(A1, A43)
by (Fl, F2)|—>F1 o F2, where
(Fl oF,), =FXF,,), fora €4,.
When for an element F12 of FG (Al, A2 ) there exists an le S FG (Az’ A1 ) such

that £}, o F21 = idA’ JFoyp 0 F12 =id, , the supermap F12 is called a superdif-

feomorphism from A, to A2 , and F21 is called the inverse ofF12 .

3.4. Lemmas on regular ideals

In this subsection, we introduce the notion of regularity of ideals of the super-
function algebra, when the index set ot the coordinates is well-ordered. We prove
the existence of the set of canonical generators of such ideals.

First we prepair two lemmas.

let A be a Zz-set and B its subset. Define «+ € F(B, A) by L, = Za (a € B)
and ¢, =0 (a €3°). We denote (*f (f € F.(A4)) by AZ, =0;a € B). This is an
element of FG (B) and hence of FG (A) by our convention FG B) C FG (A4) (cf.
§2.6).

The first lemma is a weak version of the Taylor theorem for the superfunctions.

LEMMA (3.4.1). For fEF(4),
f=fZ,=0,a€B)+2, 5. Z,f,

where f € FG (A4). In particular
Ker 1* = F(A) -{Za; a € B¢},

Proof. Write fas

- A
f= 2:(?\, pYEsm (Br)xsm (BE) fAuZ VAR
Then f can be written as follows:
— A
f= Zyesm (B7) f)\OZ + ZaeB,—c Zafa’
where f}\ u €EGo C°°(1RA3 ),fa € FG (A). By the usual Taylor theorem, we can ex-

press fy\0 as

f)\O :fAO(Za =0; aEB%)+Ea€B§ ZafAOa
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with f,,, € C=(IR7). Hence
f=Z,com (B,—)fAO(Za =0; aGBg)Z" +Z,cpc 21,
=fZ,=0,a€B)Y+Z _pc Z,f,,

where f, = Z, fr0s 2" for a€B§. qed. ]

€Esm (Bl-)
The next lemma determines the quotient of the superfunction algebras by the
ideals of special form.
LEMMA (3.4.2). Let BC A and ¢ € FG (B¢, B). Let ® GFG (B¢, A) be defined by
¢, =Z, (a € B)and ®, =y, (b €B). Then
() Ker ®* is the ideal # generatedby {Z —¢,; bEB},
(ii) ®* induces an isomorphism F.(4 Y Fg (B%).
Proof. Define W €EF (4, 4) by ¥, =Z (a€ Bf) and v, =Z, —yp, (bE

€ B). Then ¥ is obviously a superdiffeomorphism. Then ¥ o ® € F (B¢, A) is
just the inclusion ¢. In fact, for a € B¢

(Vo ®), =*V, = OX(Z, —p,) =y, —p, =0.

Hence
Ker @* = Ker(1* o (71)*%)
= ¥*(Ker 1¥)
=W*F (A)-{Z,: b € B})
=F () {Z, —¢,: bEB},
whence (i). The assertion  (ii) is obvious. q.e.d. =

We call @*f the function obtained from [ by the substitutions Z, = ¢, be
€ B) and denote it by f(Zb =¢,; b€ B).

Suppose now that the Zz-set A is given a well-order. For a subset B of A, we
define
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FY(A, B) :={¢EF (A, B); g, EF (4>) for bEB),
224, B) : = {p €EF%(4, B); ¢, €F,(A® NB°)for b EB}.

A subset E of FG (A) is called regular (with respect to the order « <), if, for
some subset B of A,

E=E(p):={Z, —¢,; bEB}

with ¢ € F0(4, B). The set B is called the set of principal indices of E and deno-
ted by pi(F).

Example (3.4.5). Let A—— x5}, A {9 ,62,03} withx1 <01 <t92 <x,
<o, .The set E : = {6, —Xx, 0 x x2 x10102}1's regular withpi(E)—{ x,}

and can be written as E(p) with 5003 1= xlelx2 and Oy, = x16102 Note that

this is not regular with respect to some other orders, e.g., X, <x < 0 < 02 < 03-

Let B be a subset of 4 and ¢ an element of F% (A, B). The ideal generated by
E(p) will be denoted by Ideal(yp). The ideals obtained in this way are called regu-
lar with respect to the order « < »,or simply regular if it is clear which order is
relevant.

Note that the regular ideal .# generated by the regular set E in the Example (3.
4.3) can be generated also by the regular set E(y) = {65, %, —x, 0 02} This set
of generators has the remarkable property that both ¥, and v, depend neither
on 6 noron x, . The next proposition shows that for every regular ideal we can
always select such a canonical set of generators.

PROPOSITION (3.4.4). Let B be a subset of a well-ordered Z,-set A and ¢ an ele-
ment of F.(A, B). Then
@) there exists unique § € F%O (4, B) such that 1deal () = Ideal ().

(ii) If ¢ € FQ (A, B) satisfies ¢) € 1deal(¢) for b € B, then ldeal(¢®) = Ideal
().

Proof. (i) We prove by induction on b that for all 5’ € B(®) there exists v, €
€ F(4%") such that

*) L :=F (AP {Z ,—¢,.; b'EBP)
=FG(A(I:)) . {Zb‘ _wb';b'EB(b)}

For b = min B, it suffices to put wb =g,
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Suppose for some b, the assertion is true for b’ EBY 1etd EFG (4 \ B, Ab)
be defined by & =Z ifa €Band @, =y, . for b’ €4° N B =B” By Lemma
(3.4.2),

Fg(A%) {Z,. —y,.; b'€BP) = Ker &%,
whence the induction hypothesis implies

b R
Fo(A%) -{Z, . —p,.; b' € B} = Ker d*.

Let \}/b = ®*p, . Then Z, —w, =Z, — Y, (mod. Ub,<b]b,), whence (¥*).
To show the uniqueness, define ¥ € F (4 \'B, A) by v =Z, (a€ B
= pr (b €B). Then

v, =

Ker ¥* =F,4){Z, —y,. bEB}
=F A)-{Z, —¢,:bEB} = ldeal (p).
Suppose Z, —f, € ldeal () for some [, €F,4 \B). Apply ¥# then
Yy =V¥Z, =1,

whence the uniqueness of 2%

(i) By (i), Ideal (¢°) = Ideal () for some ¥° € F20(4, B). But Z, —yy €
€ Ideal (¢) implies ¢} =V, .

Hence 1deal (¢°) is generated by Z, —y, (b €B) and must coincide with I-
deal (¢). g.e.d. =

§4. SYSTEMS OF SUPER DIFFERENTIAL EQUATIONS

We define a system of super differential equations as a set of superfunctions
on the «jet superspace». Two systems are called equivalent if they generate
the same differential ideal.

Section 4.1. introduces the jet superspace and the jet extension map, Section
4.2. defines the notion of a system of super differential equations and that of
its solutions. In Section 4.3 we define the notion of the regularity of the systems
of super differential equations, when the sets of the independent variables on
the jet space is given an admissible total order.

Hereafter we fix an augmented superalgebra (G, €) and omit the index G
from various notations. For example, FG A4), FG (4, B) and F%O (A, B) will be
denoted simply by F(A4), F(A, B) and FOO(A, B) respectively, where B is a subset
of a Z,-set A.
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4.1. Jet superspaces
Let 4 and / be finite Z,sets. Put
J, =44, D=4 lsm,(4, 1),
.97’ 1= F(J,),
for r € Zi‘ . We write J_ simply by J.
let (G, €) be an admissible augmented superalgebra. For a subset X of F(J), the
ideal F(J) - X will be written also by #(X).
For W= (w, ) € w(4) x I, we define u,, € F(J(A4, I)) as follows:
0 if w Esw(A4)°,

u = lz ifw=w(u) (u€sm(4)),

(u, 1)

sgn (W, ’N)Z(W " ifw=w. 7(Ww, w)Eswr(A)x Sr).

)’
Obviously u, is well-defined. Moreover there is a super diffeomorphism
UEF(J(A, I),ADsw(A, D)
defined by
U,=2,U, =u, (a@a€A WEsWA, D).

Informally speaking, (Za, u,:a €A, Wesw(A, I)) is another system of co-
ordinates on J.
For any subset B C.J(A, 1), define the jet extension map

i® FA, D~ F(A, B)

by
Zb

au(M)S.
i

. if b€EANBE,
(G%s), :=
M) if b=Mesm(A, D,

for S=(si;i€I)€F(A,1). When B = J(A, I), we write simply j=j%.

Example (4.1.1). Let Ay :={x, y}, Ay o=1{0,7n}, Iy i ={u}, I :={v}. Then
J(A,I) = A U sm(A, I) is described as

JA, Dy = {X, ¥ U iyjoanb s Veiyfocnd

0<a b c,d<l, a+band c+d+1 iseven},
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JA, D ={0,1,U,iyjqanb> Vyiyjocnd:

0<a bcd<l a+band c+d+1 isodd}

The jet extention map j: F(A, I) > F(A, J(A4, I)) maps the element given by
u =y, 0),v=1y(x, 6) to that described by

o —al 5/ 92 9® L _ i aj aaab
Uyiyjoand = 0,0,05070, Vi joanp =8, 0,350, V. =

Obviously we have

LEMMA (4.1.2). For s€F(A,I) and (w, i) €Ew(4) x I the following identity
holds:

Pk _oaw
(js) Ui iy = 0 5 ™

Remark (4.1.3). The space F(J_(A, I)) can be identified with the space of all
the differential operators from F(A, I) to F(A): In fact each element P of F(J_(4,
D)) induces a «super differential operator» DP =D(P):F(4,I)— F(A) by the for-
mula Dp(s) : = (js)*P.

For example, when /=N(1|0), 4 = A, ={x, y}, we have

D(u ) =23/dx, D(ul)(s)=(3s/dx)’,
D(u,) = 2%/dx?, D(u,,) = 3% /oxdy.

Note that D, is linear if and only if P is linear with respect to the variables in
sm(A, I). =

4.2, Systems of super differential equations

Hereafter we fix Z,-sets A and I We put & = F(J).

By the Remark (4.1.3), the concept of the general systems of super differential
equations can be formulated as follows.

Asubset § CF ¢ J(A, D) is called a system of superdifferential equations with
coefficients in G on the supermaps from A to I A supermap s € F(A, I)is called a
solution of & if

(jSY*E=0, for EES .

In other words s is a solution of & if and only if s satisfies all of the super dif-
ferential equations:

D(P)s =0, for PES.
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The set of all the solutions of & is denoted by Sol(& ).

Example (4.2.1). Suppose G =R, A =N 1 4)
={6, ,0,, 6,,0,}, I=N(1 | 0) ={u}.
Then

&= {ug1 o, T Uy 0}

defines the equation:
9%u/36, 98, + 8*u/36,06, =0.

Since this is a linear equation, the solution space is an IR-linear subspace of
R[E,,. .. ,04] and is spanned by 1,6l , 02,03, 64,0103, 0164,6203, 6204,
6, 62 —0, 6, asis easily seen. L]

LEMMA (4.22). Let &' :={E ;E€ & ,k€Z,}. Then
Sol( &) = Sol( &").

Proof. Obvious since ((js)*E), = (j)*E, (k€ Z,). q.e.d. .

Hereafter we assume a system of super differential equations & consists of ho-
mogeneous elements.

Two systems & 1 é”z C F are called equivalent if the ideals generated by
them coincides. We denote then é”l ~ &,. Obviously equivalent systems have the
same solution space.

4.3. Regular systems

Fix now a linear order on A and an admissible one on m(A, I). Define a linear
order « < » on J extending those on 4 and sm(A, I) by a <M fora € 4 and
M € sm(A, I). Unless otherwise specified, we assume that the set sm(A, I) is
given the order (i) of Example (1.3.3) when A and [ are given linear orders.

Let = be s subset of sm(4, 7). Recall that = is a Zz-set by the restricted Zz'
grading. A system is called regular if it is equivalent to & (p) for some = and
0 € F9(J, E). The set Z is called the set of principal indices of & , and is denoted
by pi( &). Note that the notion of regularity depends heavily on the choice of
orders on sm(A4, I).

Example (4.3.1). Let A5 = {x, ¥}, A7 = {0,n}, 1= Iy = {u}. Let
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E={0u_ +u, +f, e, +u, g}

where f and g are elements of C™(4). We give the order x <y < 8 <n. If we

put £ = {§, n}and define an element ¢ of FO(J, Z) by Yy =— Gux — fand
¢, =—mnu, — & then € = &(yp), and the system & is regular. However note
that if we adopt the order: x >y > 6 > n, then this system is not regular. ]

By Lemma (3.4.2), we have

LEMMA (4.3.2). Let & be a regular system of super differential equations with
= = pi(&). Then there exists a unique ¢ € F9(J, Z) such that & ~ & (Y).

Furthermore, if ¢ € FO(J, E) satisfies &) C F &, then & (o)~ & . =

REMARK. The assumption of regularity is not restrictive: If &={¢,.. .. ., @, )
and «the symbol submodule at { € A(G)» is regular of rank £, then around
¢, the system & is regular. This follows from the implicit function theorem
for the supermaps. ]

§5. FORMAL GROEBNER INTEGRABILITY

As in the previous section, we fix finite Z,-sets A and 1. We put Jr = Jr(A, )]
and 9—', = F(Jr), for r € Zj . Fix a linear order on A and an admissible one on
m(A4, I), and extend it to J_ as in Section 4.3. For M € m(4, I), we put FM.
= F(M y FM) . = p(JM)) Note that JM) = M when M does not belong
tosm(A, I).

5.1. Extension of partial derivatives

Fora € A, we define d_ : F_ =F(J_A D)~ Z_ by
dF=03,F+Z  nesmu.D %awwni a(p,i)F’

for FE #_.

LEMMA (5.1.1). Let s€ F(A, I). Then
(Us)*d F =9, (js)*F
fora€Aand F €% .

Proof. By Propositions (3.2.2) and (4.1.2),

(9)*d,F = (j$)*@B,F + Z, 5 %aw (uy,00u.n )
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= EbeA a:sz (js)*abF + E(u.i)aa (ausi)(js)*a(n,i)F
=X preria .00 ) )Js)* (@, F)
= 8a(js)*F, g.e.d. L]

LEMMA (5.1.2). Suppose (u, M) € sm(A) x sm(A, I) satisfies p + M € sm(A, ).
Then

d“(FMyc F 1M,

Proof. We may assume u = §, (a € A). Since M' <M implies
6, +M <8, +M,

the condition F €#M impliesd F € F%+M  obviously.
q.e.d. -

5.2. Formal Grobner integrability
Define for EC.# _and n€Z*

p (&) :={d"E;uEsm, (A), EEE}

By Lemma (5.1.1), Sol(&) = Sol(p, (&) for n€ zx.

DEFINITION (5.2.1). A regular system & is called formally Grobner integrable if
p_ ( &)is aregular system with

pitp (&) = p_Pi(E)).
REMARK (5.2.2). We have always

pilo (E)) D p_(pi(E))

by Lemma (5.1.2). However the other inclusion is not necessarily true since the
ideal generated by p_ ( &) may contain nontrivial compatibility conditions as is
illustrated by the following simple example. ]

Example (5.2.3). Let Az ={x), Ay =10}, I=I5 ={u}, €={f: =0u_+u,).
Then & is regular with pi( &) = {0}, and hence p_pi( &) ={x"8;n € . But
d,f=u_ implies that x € pi(p_( &), whence pi(p_( &)) coinsides with sm(4)
and properly contains p_ pi( &). In particular & is not formally Grobner integra-
ble. =
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The main theme of this paper is to give various practical sufficient conditions
for the formal Grobner integrability of regular systems.

In the rest of this section we give simple rephrases of the formal Grébner
integrability.

LEMMA (5.2.4). Let & = & (p)with ¢y €F*(J_,E). PutZ :=p_(E). Choose,
for each M €E, an element (4, M) of sm(A) x E such that u + M =M and put

5 M g M ~ -
Gpp =dpy ©F L. Then ge RO (J_,Z)and & is formally Grobner integrable
ifand only if p_(&) is equivalent to its subset & ().

Proof. If p (&) ~ & ($), then & is compatible by definition.
The converse follows from the following lemma. g.e.d. =

LEMMA (5.2.5). Suppose & is formally Grobner integrable. Let p € FO(J_,E) sa-
tisfies ¢, € Fp_(&)) for MEE. Then & () is equivalent to p (& ).

Proof. let p_( &)~ & (y) with ¢y € FO(J, E). Then &(p) C S (), whence by
(ii) of Proposition (3 .4.3), we have F(¢) = F£(¥). ged. L
LEMMA (5.2.6). For M € m(A, Iy and ¢ € FO(J, E), the ideal of F M.

Ideal™)(p) : = £ (p) N F M)
is generated by {Z,, —¢,,; N € ENJM

Proof. We may assume ¢ EFOO(J_:, Z). Define ® EFJ_,J )by <I>N =2y
N e i‘”), ZN — ey (Ne i). The induced homomorphism &* js an automor-

phism satisfying ®*F M) = g M) P*Z, =Zy —¢y (NE Z). Hencewe may
assume ¢, =0 for NEE. Let

f=Zyez Inen € Fm.
Since f=f(ZL =0, L > M), we have
=2, uIvE, =0,L>M2Z,
which belongs to the ideal of # M) generated by
{Zys NEENJUD} g.ed. .

COROLLARY (5.2.7). Let ¢ € FO(J_, E) with ZCsm(d4, D). If fEFM)  bpe-
longs to # (p), then [ belongs to the ideal generated by
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{Zy —oy; NEENTUDY n

§6. CRITERIONS FOR THE FORMAL GROEBNER INTEGRABILITY
6.1. sm-subsets of sm(A, I)

let A and I be Zz-sets. Fix an admissible order « < » on sm(A4, I).
“For M€sm(A, I) and = Csm(A, I), we define

E—M:={pE€Esm(A), u+ M€ E}.

When = is an sm-subset, = — M is an sm-subset of sm(A4).
Let = be a finite subset of sm(A4, I). Let = be given a linear order « <». We
define the set of multiplicative indices

ml (M) =ml t- M) Csm(A)
of M €= with respect to the order « < » as follows:
mltM): =[{p_{M €Z;M' <M}— M}V {sm, I —M}F.

The obviously the complement m! t(M)° is an sm-subset.
Define

ml (A, E): = {(n, M) Esm(A, E); p € ml t(M)).

By the definition of ml t(A4, ), we have

LEMMA (6.1.1).
(i) The map (p,M)b> u+ M induces a bijection v from ml t(A, E) to p (=) .

(i) For (u, M) E{ml 1A, E)}° with u+MEp_(E), let v (u+ M)=u'M').
Then M' < M. ]

Example (6.1.2). Let A5 = {x, y}, At =1{0,7}, 1= N(1]|0) and identify sm(4,
I with sm(A). Let

= ={x3, xy, x20, n}
and give the order:

x3 >xy >x20 > 1.
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Then
{mlt(n)} = p_{n},
{ml 1x29))° = p_n, 6},
{mlt(xy)}* =p_{n x0},
ml () =p_m, 6, y1,
and hence

ml t(n) = smix, y, 0},
ml t(x20) = smix, y},
ml t(xy) ={y°0, x°y?;a, b E Z.},
mi t(x 3) = smix}.
We have the following disjoint union decomposition:

p_E=mn-mltn) Ux26- mi t(x26) Lxt-mltxy)l x3 - ml z(x3),

Here we denoted multiplicatively the set generated by subsets S1 and S, of
sm(A) by S1 . 52. ]

Let I' C sm(A) be a subset. An element vy of I is called primitive if v does not
belong to p (I \{v}). Let prim(I") denote the set of all the primitive elements
of T". As is easily observed, the subset of sm(A) generated by a subset I' is also
generated by prim(I").

For an sm-subset Eof sm(A4), the set prim(Z) will be denoted by Basis (Z).

Example (6.1.3). Let A be as in Example (6.1.2). Then

prim({xz,xy4,y3,6n,x3n})={x2,y3, on}. m

PROPOSITION (6.1.4). The set prim(Y") is a finite.

Proof. For every pair v, v € prim(T"), neither y € ¥' nor v <7y is true.
Hence by Theorem of Riquier (cf. p. 147 of [Ritt]) must be a finite set. g.e.d. &

Example (6.1.5). In the Example (6.1.2), we have

Basis({ml t(n)}¢) = {n}
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Basis({ml t(x*0)°) = {n, 8},
Basis({ml t(xy)}°) = {n, x8},
Basis({ml i(x3 N ={n,0,y} n

A subset = of sm(4, I) is called l-acyclic if Basis((mlt(A, E)}c) C sml(A,E).
The following is obvious from the definitions:

REMARK. The term «acyclic» comes from the fact that if = is l-acyclic, then

the «super Koszul cohomology» of the sm-subset generated by {Z% « € E}is
trivial. [

PROPOSITION (6.1.6).

(i) A subset = of sm(A, I) is l-acyclic if and only if for every element M of

it, there exists a subset AM of A such that ml t(M) = sm(AM).

(i) If £ is lacyclic, then
plE) = LIMGE(sm(AM) + M).

Example (6.1.7). Let A and I be as in the Example (6.1.2). Let
El L= {x3, xy, x0, n}
with the order x> > xy >x6 >n. Then thisis 1-acyclic. In fact

Basis({ml t(n)}°) = {n},
Basis({ml t(x0)}°) = {60, n},
Basis({ml t(xy)}¢) = {9, n},
Basis({ml t(x*)}°) = {6, 1, y}.

The multiplicative sets are described as follows:

ml t(n) = smix, y, 0},
ml 1(x0) = ml t(xy) = sm{x, y},

ml t(x3) = smix}. =

6.2. Precompatibility
Let Z be a finite subset of sm(4, I) and & ~ & (p) for some p EFO(J_

,E).
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—

We give = a linear order which may not be the restriction of that of sm(4, I).
Let ml t(M) be defined with respect to this order.
We denote p_ (£) by Z. For each element M of Z, put

Oiz 1 =d 0y
Vi =2 — i
where (¢, M) = v 1M € ml t(4, E) (cf. Lemma (6.1.1)).
DEFINITION (6.2.1). A system of super differential equation& is called precompa-
tible if
a*y, € £(@)
for all (p, M) € Basis ({ml t(A, Z)}°), where

=, MeEF°VY

=
=). . n

oo ?

Note that this is a finite number of conditions by Proposition (6.1.4). The
following example gives an example of systems of super differential equations
which are not precompatible.

Example (6.2.2). let A5 = {x, y}, A7 = {6}, I = I = {u}.Introduce the order
8 > x > y and give sm(A, I) = sm(A) the standard order (cf. beginning of Section
43). let= =10, y}and ¢ € FO(J_, E) be defined as

o =*+u, + fix, y,0,u),
¢, =g, p, 0, u),
with f, 2 € C™(4 U I). The system & (y) is the following system of equations
ou/d0 + 0ou/ox = f(x, y, 6, u),
ou/oy = g(x, ¥, 8, u).
Define in = the order 8' > y. Then
{ml t(0)} = p_ {6},
(mlt(y))€ =p {0},
p_(E)=p_10,m) ={6xpb x%p2* 1 4 b>0}.
Hence

Basis({ml t(A, Z)}°)={(8, 8), (8, y)} Csm(A) x E.
On the other hand,
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ml 1(0) = ml t(y) = smix, y},
E={6x"y®, x"y®*!; s bez },
and
VYpaph = Ugeayb +dod,(Ou, —1),
‘!’xayb-f 1 =Ueayb+1l — di de,g-

Thus & () is precompatible if and only if d, (“9 + Bux —f) and d, (u;v —2)
belongs to the ideal .# (@). However, we have modulo £ (p)

d, @, + 6u, —f)=u, —OF, +f, —I,),
d,(u, —e)=f, — &f, — 08, —&, — 18,
whence the equation & (¢) is not precompatible. -
For N €ml t(A, I), let Ideal'” )(3) be the ideal of F W) generated by { Vs
M <N). Since d*y,, €F ®*M) Corollary (5.2.7) implies the following lemma.
LEMMA (6.2.2). A system & is precompatible if and only if
d*y,, € ldeal s +M)(g)

for all (u, M) € Basis({ml t(A, E)}). =

6.3. Formal Cartan-Kihler Theorem
Let = be a finite subset of sm(A4, J) and & =& (¢) forsome ¢ € FO(Jm ),

THEOREM (6.3.1). The system & is formally Grobner integrable if and only if it
is precompatible.

Proof. We use the notations of the previous section. Suppose & is formally
Grobner integrable. Then p( &) ~ &(P), where $E€FO(J_,E) is the element
defined in the previous section. Then

diy,, € FErM) N g(p) = Ideal ™ * M) (p).

by Lemma (5.1.2).

Conversely suppose & () is precompatible. We prove by induction on (g, M) €
€sm(A, =), that

M), d*y,, € ldeal * + M)(3).
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Here the order of sm(4, E) is the pull-back of the lexicographical ordering
of sm(4, E) x E by the map (u, M) (u + M, M). This order is obviously admis-
sible.

For the minimal element (0, MO) (M0 : = min Z) and for (u, M) Eml t(A4, E),
the assertion (l)#'M is trivial. For (u, M) € Basis({ml t(4, £)}°), the assertion
(1),, 5 is valid by the precompatibility of & .

Let (i, M) € ml t(4, £) U Basis({ml t(4, E)°). ‘

Suppose (l)u’M is valid for (u, M) < (@, M). There exist A, u € sm(4) such
that (u, M) € Basis({ml t(4, Z)}*) and X + u = . Then

d* Yy € ldeal#+ ().
It suffices to show
d* 1deal ™ * M) (3) C 1deal ® +M)(p),
for which we have only to show
d*y,, € ldeal®* M) (g),
for NEEW+M) 1oty 1 (N) = (u', M") € ml t(A, E). Then
Yy =d" Y.
We have (u', M"Y < (u, M).
In fact () if N < u+ M, then ' + M' = N <y + M, whence (', M') < (1, M).

(ii) Suppose N =u + M. Since M' <Mand u' + M' =N = p + M, we have (u' M")
< (u, M). Hence A\ + u', M"Y < (M + u, M) = (&, M) in any case. Therefore

My, =d ey, € ldeal Mt E M) () C 1deal (%)

by the induction hypothesis. g.e.d. L]

6.4. Involutive systems of super differential equations

Suppose that a regular system is homogeneous, i.e., its principal index set
= of a regular system lies in smr(A, I) for some r € Z _ and that = is l-acyclic,
i.e., the nonmultiplicative set ml f(Z)° is generated by elements of degree 1.
Then the precompatibility of &€ can be rephrased in a different way, close to
the classical involutivity.

DEFINITION (6.4.1). A regular system & is called involutive if the following
three conditions hold.
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i=pi(€)C sm (4, D),

Id

(i)
(ii) = is l-acyclic, i.e., Basis(ml t(Z)°) C sm, A, n,

(iii) & is precompatible,

Suppose E C sm (4, ]) and Z is 1-acyclic. Let & = & (p) with ¢ € F(J_, E).
Define € FO(J_ p_(Z)) and y € F(J_, p_(E)) as in §6.2. Put

ﬁl(é"):z{\pN;NGpl(E)}.

Then under the conditions (i) and (ii), the precompatibility can be rephrazed

as follows:

PROPOSITION (6.4.2). Suppose & C sm (A, I) is I-acyclic and let ¢ € Fo (J_=).
The regular system & = &(p) is involutive if and only if Fl(é') and pl( &)
generate the same ideal of & | -

Proof. By the 1l-acyclicity of Z,

{ml (4, ) N sm, (A, Z) = Basis((ml t(4, E)}°).
Suppose & is involutive. Then for (e, M) C sm, (4, E),

d_y,, € ldeal(d).

Then, by Corollary (5.2.7),d, \l/M is in the ideal generated by pTi(é" ).
Conversely suppose d, ¥, € 971 P (&) for (a, M) € sm (A, E). Then d ¥, €
€ Ideal(@) for a € Basis({ml t(M)}°), whence & is precompatible. q.e.d. =

6.5. Good involutive systems of super differential equations

Since the l-acyclicity of subsets of sm, (4, ) is rather difficult to check, we
give a practical sufficient condition for a subset = of smr(A, D) to be l-acyclic.
We note that when AT is void, this condition holds for «generic» regular systems

of differential equations.
Let « < » be a linear order on A. This induces the following partial order,

denoted again by « < »,on sm(A, I):
M<MeM =5 — 8, + M for some g, b € A with b <a.
Example.let A5 ={x, y},Ay = 0,n withx>6>y>n.
Then on smz(A, I), the induced partial order can be depicted as fol-

lows:
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xn

XJ’/ \
oINS
N

where smaller elements lie right to larger ones. =

A subset = of Smr(A‘ 1) is called good if there is a linear order « < » on A4 such
that M € = implies M' € Z forall M' € sm (A, I) with M >M.
For u € m(A), define

o(p) i =minfa € A; u(a) # 0}
and call it the class of u. Define
Aw) :={a€A; a>c(pu) or a=c(u) €Aq}.
LEMMA (6.5.1). Give = the restriction of the standard ordering of (i) of Example
(1.33). If=C smr(A, 1) is good, then, for M € =.
(1) Basis ({ml t(M)}) = A(u(M)),
{ii) ml M) = sim (A(u(M))°).
Proof. Fix M € = andput A:= A(uM)) for brevity. Put ¢ = c(u(M)).
First we show A C {ml r(M)}°.
Suppose a > ¢. If « €Ay and #(M)(a) > 0. thena € {mItM)*¢ by definition.
If a € Ay and u(M)(a) =0 ora € A, then §  + M =& + M with M'=M + 6, —
- 8, €E. Since M' <M, we havea E {mil 1 11)‘C

Suppose a = ¢ € A+. Then a is in the set {ml t(M)}C because of u(M) (¢) > 0.
Thus we have proved 4 C {ml t(M)}€, which implies

(ml M) D p_(A).
Next we show that
) {ml t(M)}¢ C p_(A).
Suppose u does not belong to p_ (4), which means
(3) wa)=0 if a>c or a=cE€Ag.

We show that 4 + M does not belong to o (EMY. Then u belongs to mi 1(M).
Hence (2). Suppose the contrary: u +M € pw(EM). Then we have

/J.+M:V+JV
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for some v € sm(A) and N € Z¥ . We shall show that this implies u(N) < u(M),
whence p(M) = u(N) because of | u(N) | =| u(NV)| . This is a contradiction.
Since N <M, we have c(u(N)) = ¢ and

uM)@) = p(N)@) =0 for a<c
and

M) = u(N)(c).
For a > ¢, the assumption (3) implies

uM)(a) = v(a) + p(N)a) = u(N)a).

Hence we have proved {m!/ t(M)}C = p_ (A(u())), which is equivalent to the
assertion (ii). The assertion (i) follows obviously from (ii). ged =

COROLLARY (6.5.2). If = C smr(A, 1) is good, then it is I-acyclic. =

let = be a good subset of smr(A, I) with respect to a linear order of 4. We
give to m(A, I) the ordering in (ii) of Example (1.3.3). Let & = & (p) with
p € FP (J_ ., E). The next lemma gives an explicit description of the subset p_l(co@)
of p, (&) defined in the previous section when & is good.
LEMMA (6.5.3).
P, (&)= EUd Y, MEE, a€AMM)Y).
Proof. By Lemma (6.5.1), ml t(M) = sm(A(u(M))°). Hence
p(E)=EU5,+M a € A(u(M))}.
This implies
"Eéa-FM:da"oM’ wéa-i-M:dawM
and
P (E) = (v NEp, (@)

Uy oy a EAWODY)

= é”U{

Il

EUd Y, aEAWBD)).  qed. .

Now we can rephrase the compatibility of regular systems of super diffe-
rential equations with good principal index set in a style close to the classical
involutivity.
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PROPOSITION (6.5.4). Suppose Z is a good subset of sm (A, I). Let & = & (p)
with ¢ € FO(Jue , Z). Then & is involutive if and only if for all M € = and a €
€ A(uM)),

dy, =0 (mod 7, (&)).
Proof. Obvious from Proposition (6.4.2) and Lemma (6.5.3). q.e.d. L]

REMARK (6.5.5). When = C smr(Aa, Nor 2C Smr(AT' D) it is possible at least
«locally» to make a linear change of coordinates so that a regular system & with
pi(&) = E tumns out to have a good set of principal indices. This statement does
not seem true for general =.

§7. SYMBOLS

We fix as before Z, sets A and 7 and an augmented superalgebra (G, €).

7.1. Involutive submodules

let £ = Giie]]R - € be the Zz-graded IR-vector space with the parity Ei =1

For a superalgebra F, the tensor product
lR[Al@IR E®1R F= &z ]Ri[A]®IR E®IR F

will be considered as a Z-graded supermodule over the Z-graded superalgebra
R[A] e F =9, lRZ.[A] ®F. Weputw, :=Z2 @1 €R[4]e F (¢€A)and

e, .= w“ei M = (u, iy€sm(4, ). As an F-module

M

RiAl@E®F =8, ant ey

We assume that sm(A4, I) is endowed with an admissible order « < », and use
the notations of §2.3 for the F-module IR[A]® E © F.

Let S be a regular F-submodule of IR[4] ® E ® F and Z its principal index
set. We call S involutive (with respect to the order « <») if

(1) E is l-acyclic,
and
(i) pr((R,[A] ® F) - §) = (R [4] ® F) - pt(S).

We note that generally the right hand side of (ii) is a proper subset of the
left hand side, as the following example shows.

Example (7.1.1). Let F = R, A = Ay = {x, y}, with the order x > y and
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I = Iy = {u}. Identify sm(A, I) with sm(4) = m(A) and give it the order in (i)
of Example (1.3.3). Let

S=IR-(x? +y2)€BIR-xyCIR2[A].

Then pi(S) = {x2, xy} is good and hence 1-acyclic. Further
pt(S) = R-x2+R-xy

and

(R, [A])- ptS) =R -x* + R -x*y + R-xy?.

But
R [4]-S={x>, x?y, xy%, y*} = pt(R, [4] - S),

whence the left hand side of (ii) properly includes the right hand side in this
case. n
REMARK (7.1.2). (i) When 4 = Aﬁ and I = IO—, an F-submodule Sof FeIR[A]®E
is usually called involutive if the Koszul complex associated with the F[A]-
module S is acyclic (cf. [5] for example). 1t is not difficult to see that if S is
involutive in the usual sense, then, by a suitable linear change of coordinates,
the principal index set pi(S) C sm (A, I) is good and hence l-acyclic and the
condition (ii) is also satisfied, i.e., S is involutive in our sense. Conversely it is
easy to prove that if .S is involutive in our sense then it is involutive also in the
usual homological sense.
(ii) 1t can be shown that if S is involutive then

pt(R [A]® F) - §) = (R [4] ® F) - pt(S)

for all r. Note incidently that this means that if {s,; XA € A}is an F-basis of S
such that {pi(s,); A € A} = pi(S), then {s,; A € A}is a Grobner basis of the
sub R[A4] ® F-module of IR[4] ® F ® E generated by S. u

7.2. Symbol modules of systems of super differential equations
We use the notations of §2.2 and §7.1. Forr € Z we define
o : .97r - er[A] oF .97,
by
0,(F)=Zpesm, a.nm @Ot

Example (7.2.1). Let Az = {x, y}, Ax = {6, 0}, I = k5 = {u} and identify
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R[A] ®E with R[4] by feu < f(f € R[A]). Then

0, (bu W otu u u)

xy 6n X0 yn
— 2
—xy®0u6n+2017®9uxyue+x6®6uuyn~yn®0uux9. =
Obviously we have
LEMMA (7.2.2).
() Kero =%, .
(i1) or(uw )=¢" e for w=(w, i) E wr(A) x 1,
(iii) 0,(FG) =0, (F)G + Fo (G) for F,Ge& 57r. n

The following lemma gives the relation between O, and o,

LEMMA (7.2.3).
o,, dF)= {“or(F) for w&sm (A) and Fe# .

Proof. We may assume u =86 .

0,1 WY =0,  (Z hesman Yawani Oun )

®d, F=t 0(F). q.e.d. .

r+1

= Zyresm a0 Sau

Let & C 9r be a system of super differential equations. Let 9'_-r be the quo-

tient algebra of & by the ideal generated by & . Let 7 : 9’—r - & be the pro-
jection. Put

0,:=(e7)co,: ¥ >R[4]eLe F .

r

Then
0(hg) =35, (h)7(®)

for h € 37} -& andg€ 9'_,, whence
Symbr(éa)::ﬁr( 5”:'- &)

is an yr-submodule of IRr[A] Lk ® 9':r, which depends only on & - & . This

r

is called the symbol module of & .

7.3. Condition of involutiveness in terms of symbol modules

Fix an admissible linear order on sm(A4, I). Let & be a regular system and
put = =pi(&) Csm (4, ).
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THEOREM (7.3.1). A system of super differential equations & is involutive if and
only if the following two conditions are satisfied :
(1) Symb( &) is involutive,
1 (72 &% _ &
(i) Fo.0EINF =F &
Proof. Let & = & () for some ¢ € F° (J, E).

Suppose & is involutive. By Proposition (6.4.2) we have for (8:1’ M)€E Basis
(mlt(A, E)°

(5) dy, €

r+1

7,(8),

(cf. §6.4 for the notation 5, (&), which implies

©) Ay, = ) Cuby
Nep, (%)
with CN S 9*; , and C EF for N € sm el (A, 1), by virtue of Lemma (7.3.2)
below.
Put

0=y - — =
o (2):= pl(.—) N sm_ 1(A, D.
LEMMA (7.3.2). Suppose

V=C T Eyeem a4 N En Zy

with Cy, CN € / belongs to %

V= NEp( )C wN’

P, &). Then

r+1

with
CN'N S (/O‘*r for N & ptl’(E)
and
5N‘ € ﬁ"r + 2Mesn1r+1(A 1) ‘g-br Zy Jor NEE
Proof. Obviously, modulo an element in ENEp‘; =) 97 . ‘,lz , we have
V=9, =Gy t I ycsm,, (4.0, (= y vy

with Cy, C;, € . By Proposition (3.4.4), there exists @ € F®¥(J, p, ()
such that & (7, (9)) ~ & (p). Make now the substitutions

zZ

y =%y for MEp (5).
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Since ¥, € & (P, (pY), we have by Lemma (3.4.2),

Vo =Gy +ZyCp 2y,
where th' . C;(ZMz @’M;M € £). Since 1 and{ZN;NESMr+ L (A4, D}are linearly
independent over & ;"we obtain Cj, C,, = 0, whence C,. Cy €F, - & . Thus
Vo = ZyezCon ¥y +Zy Cym¥uZn) =Zyez Cn kl’M,'
ged =
Applying 0, ;| to (5), we obtain

S0 W) =2 e 0z OnO (W) + 2520, GV,
where we note that o, (CN) =0 for N & p(l) (£). For N € p(l) (), there exists
by definition a unique (§,, L) € ml (4, Z) such that Bb +L=Nand y, =
=d, xbL . Hence

§,0,(dy) = Zsy.L)EmlsA WS W )+ Z 0, (G

| Z

.1 - €, we obtain

Considering in R[4]® £ ® 37”1

gaar(wM) = Z(csb,L)Em It(A ,.'-:)CNgb Er(‘bL)'
This is an identity in R[A]® £ ® % and implies

R [4]- Symb( &) = ® F - 5,5,00)),
(6, L)EMIL(A,E) T r

whence

pi(R [A] - Symb(&)) = sm (A, ID B E,

which means Symb( &) is involutive.
As to (ii), the Corollary (5.2.7) implies

Il

2774 VoA .
FNEF 0 (E)CF (Z,—pNEp (E)NJ, =x|

r

=% . &

r E
whence (ii) is true.
Conversely suppose (i) and (ii) are true. Since

Symb(Ey=e, __F b, (b =7,(,)

(i) is equivalent to
% b

IR, [A4]- Symb(é”):fBNepg(g)J; v

1
where b,, = §‘bbL for N = 1, + L with (1,, Lyemlt(A4, £). Hence for (a, M) €
€ Basis(ml t(A, I)°),
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@) §,by Nep = )CNbN

Choose C,, € 5*-’ which represents CN. Then
1@ ¥y —Zne,o =) Cv¥a)
=80, =2, emira,n Coper S50V

Since the projection from R[A] ® E® ‘gtrn to R[A] @ F @ 9—7’“ annihilates
the left hand side by (7), we have,

d ¥y — zNep‘} (%) Cy¥y = EME:m,_,,l(A I)CMZM +6G

with C, € # -6, C, € F . Since
C,EFNZ,  p (&)

we have C; € 9 - &. Hence

dy, €% (&)

r+ 1Py

Hence & is involutive. g.e.d. »
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