
JGP.Vol.6, n. 2, 1989

Compatibility of systems
of super differential equations*
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Abstract.A precisedefinition of thecompatibility of systemsofsuperdifferential
equations is given, called Gröbner integrability, which includestheinvolutive-
nessas a specialcase.Severalpractical criterionsofGrObnerinregrability are given,
oneof whichgeneralizestheformalpart of the Cartan-Kd°hlertheorem.

INTRODUCTION

I. Recently in the theory of supergravity field equationsare written down

using the so called superspaceformalism: fields are superfunctionson a super-
spaceand the equationsare systemsof superdifferential equations.Although

many concretesystemsofsuperdifferential equationshavebeenalready deeply

analyzed, there seemsto be no generaltheory comparableto the formal theory

of systemsof differential equations, which is by now a completed theory
both theoreticallyand practically.

2. The remarkable novelty of systems of super differential equations is

that it has more compatibility conditions than usual systemsof differential

equations.For example even a single superdifferential equation hasnontrivial
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compatibility conditions and hencecan be incompatible. This fact is actually

one of the essentialpower of the conceptof systems of superdifferential

equations. For example Witten ([7]) usesthis fact to expresssolutions of the

Yang-Mills equationsas certainvectorbundlesoversupersnacec.

3. In this paperwe considercvstemsof superdifferential equations,and give

severalcriterions for their compatibility and when they are compatible give

a methodto describethe spaceof formal solutions.

4. The key conceptis the formal Gröbnerintegrability of systems of super

differential equations.

The introduction of this notion is strongly influencedby the notion of the

Gröbnerbasis in the computeralgebra theory (cf. El] for example). In fact

the analogueof theGrobnerbasisfor thebasisof differential idealsin differential

superpolynomial algebrais exactly the formal Grobnerintegrability of systems

ofsuperdifferential equations.Thus we might as well say that a systemof super

differential equations constitute a GrObner basis of the differential ideal ge-

neratedby it insteadof sayingthat it is formally Grobnerintegrable.

When a systemof superdifferential equationsis formally GrObnerintegrable,

we know all about that system,in other words, thereareno unexpectedconse-

quencesof it. Thus for exampleit is easyto judgewhetheradifferential relation

among the unknown functions is a consequenceof that system. ‘This allows

theoretically automated theorem proving in the theoryof superdifferential
geometry in the line of [8]. Further we can also solve the superdifferential

elimination problemeasily.

We should remark here that the formal Grabner integrability of systemsof

superdifferential equationsdependson theorderintroducedon thesetof partial

derivatives,and henceis not a conceptinvariantly defined.Howeverthis ic rather

an advantagewhen we study concretesystemsof superdifferential equations.

For example when we want to solve a superdifferential elimination problem

we canandmust choosean appropriateorder.

The framework of the formal geOmetry in the senseof Gelfand (cf. [2] for

example) is essentialfor the formulation of the concept of formal Grobner

integrability.

5. Sincethe formal GrObnerintegrability consistsof infinite numberof condi-

tions, the main problem is to give practical criterions for the formal Grobner

integrability of systemsof superdifferential equations.

The main purposeof the presentpaperis to give severalsuchcriterions,which

might be called formal CartanKãhler theorems.
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The first criterion assertsthat the tormal Grobner integrability of a system

of super differential equationscan be establishedchecking only the minimal

set of compatibility conditions.When thesystem consistsof theusualdifferential

equations,then this result is essentiallythe sameasgiven classicallyby Riquier,

Janet,et a!. (cf. [4]).
We remark that these results are sufficient for the formal geometric study

of concrete super differential equations(cf. [6]) even for the pure evencase.

The secondoneis a morerefined one,basedon thenotion of theinvolutiveness

of systemssuperdifferential equations.This criterion is very close to the usual

Cartan Kãhler theorem except that the notion of the involutivenessadopted

in this paper dependson the choice of coordinates.I havenot yet been able

to rephrasethis involutiveness as the acycicity of the super Koszul complex

associatedwith thesystem.

6. The prolongationtheorem in the sense of Cartan-Kuranishis not treated

in this paper. However we remark that a naive version of it is rather obvious:

when a given systemof super differential equationsis not formally GrObner
integrable,we add to it the new equationswhich areobtainedby checkingthe

minimal compatibility conditions until the systemis formally Gröbnerintegrable.

When adding the new equationsdoesnot destroy the regularity, it is easyto

seethat this processterminatesin a finite numberof steps.

7. We commenthereon the two simplificationsassumedin this paper.

We consider only systemsof superdittèrential equationson superdomains.

This enablesus notonly to concentrateon the essentialfeaturesof the problem
of the compatibility but also to avoid the difficult choiceof various formula-

tion of supermanifolds.It doses not seem difficult to generalizethe results of
this paper in global setting, once one has chosena formulation of super-

manifold.
Secondly we consideronly regular systemsof super differential equations.

This is inevitablein order to avoid the variousdifficult questionsinvolving differ-

ential ideals, which howevershouldbe takenup someday. On the otherhand
this restriction is not so inappropriatein the applicationpoint of view since

mostof the systemsencounteredin physicsare regular.

8. The outline of this paperis as follows: in section one, we fix notations

of supermulti-indices,which play importantrole throughoutthis paper.

In sectiontwo, we review basic conceptson superspacesnecessaryfor later
parts. We considergeneral superfunctions witch coefficients in arbitrary
superalgebra,which seemsto be necessaryto treat general super differential
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equation. However the readercan assumethe coefficientssuperalgebra G to be

thetrivial algebraIR for the first reading.We remarkthat thenotationsusedthere

are slitely unusualbut seemsto make local argumentsquite conciseevenwhen

confinedto the purely evencase.

The simple lemmasin the subsection3.4 give us powerful tools to manipulate

regular ideals, which substitutein a sencethe difficult delicateargumentsneces-

saryfor manipulatinggeneralideals.

Section four definessuperdifferential equationsin termsof thejet superspace

and section five introduce the key conceptof formal GrObnerintegrability.

Section six givesa few sufficient conditions for the formal Gröberintegrabili-

ty. The subsection6.1 is crucial for thestatementof suchconditions.

The final section seven gives a refined version of the sufficient conditions.

which is in pure evensituation reducedto the formal part of the usual Cartan-

KählerTheoremas formulatedby Goldschmidt([3]).

9. Finally we remark that even in the pure even case,our approachgives a

new simpler method of analyzing concrete systems of differential equations.
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NOTATIONS

Aa: ={b; b <a}, when(A, <)is anorderedset.

A(a): =Aa U~fa},when (A, <)is an orderedset.

A II B: thedisjoint union of sets A andB.

BC: thecomplementof asubsetB.

1 ifi=j, =0 if ~

= thenumberof elementsof aset1.

= {1, 2,... , n}.
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IR: = the field of real numbers.

Z : = thering of integers.

Z~:={nEZ;n~0}.

Z÷~:={nEZ;n>0}.

Z*:=Z U{oo}.+ +

Z2:={0,i}—Z/2Z.

More specializednotations and terminologiesfrequently usedarelisted below

accordingto the placewherethey are first introduced (A andIstand for Z2-sets

and G for a superalgebra):

1.1 . Z2 —set .N(ns n).

1.2. sw~(A),sw(A).

1.3. m(A, I), admissibleorder,Z (a EA).

1.4. Sfllr(A, I), Sfll( )(A~I), p~G~)(Z C sm(A,I)), U ~ V.

2.1. augmentation,augmentedsuperalgebra,admissible augmentedsuperalge-

bra,G-superalgebra

2.2. G-supermodule,idealof G, G.X.

2.3. pi(W), pt(W) (W: a submoduleof a free G-supermodule),regularsubspace

of a free G-supermodule.

2.4. A(G) (A : a Z2-set),G-point.

2.5. IR[A], IR[A], IR[A]],P(G):A(G) -+ G (PE lR[A]).

2.6. F(A),FG(A),FG(AU)

2.7. aa =a/aZa :FG(A)-+FG(A)(aEA).

2.8. r :FG(A)~~*FG(A~~)®lR[A]].

2.9. evf:FG(A)-÷G(~EA(G)).

3.1. FG (A, I), a smoothsupermapwith coefficientsin G from A to I.

3.2. F* :FG(I)—~FG(A)(FEFG(A,J)).

3.3. superdiffeomorphism.

3.4. F°G(A,B),F~(A,B)(B CA), regularsubsetof FG(A),



T. TSUJISHITA

E(p) (~cE F~(A, B)), pi(E), regularideals.

4.1. .1, =J(A, ]),J=J(A, I), ~ = F(J~),u~(WEsw(A,1)),

/: F(A, I) -~F(A,J(A, I)) (B C 1).

4.2. a system of superdifferentialequation,solution,So1(~),i~

4.3. regularsystemof superdifferentialequations(p) (~pE F°(J Z)), pi( c~)

( g~a systemof superdifferential equations).

5.1. d0:F(J(A,I))-÷F(J(A,J))(aEA).

5.2. p,~( ~), formally Gröbnerintegrable.

6.1. mlt(M)(MEsm(A, I)), mlt(A, Z),Basis(Z)

(~C srn(A)),prim(r), 1-acyclic.

6.2. I].IM_(M E p(Z)), precompatible.

6.3. good subset,cCu),classof ji, A(p).

7.1. involutive

7.2. o~~r’ Symb(~).

§ 1. SUPERINDICES

1.1. Z2-sets

Let A be a set. A map p : A —~ is calledaZ2-gradingof A. A setendowed

with a Z2-grading is called a Z2-set. Let (A,p) be a Z2-set. We put Ak = p
1(k)

(k E Z
2). We oftenwrite ~ = p(a).

A subsetB of a Z2-set (A,p) is consideredas a Z2-set by the Z2-grading

PIB’
If (A1, P1) and (A2’ p2) are Z2-sets,we considertheproductA1 x A2 andthe

disjoint union A1 U A2 as Z2-setsby the Z1-gradingsdefined respectivelyby

p((a1, a2)) = p1 (a1) + p,(a,), for a. EA. (i = 1,2)

and

THA1T~I for i=1,2.

The set N(m) will be regarded as a Z2-set by
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N(m)0—=N(m), N(m)~=~.

We denoteby N(n) the Z2-setdefinedby

N(n)~__N(n), N(n)~5.=çb

and put

N(mln):=N(m)U.

From now on we fix a finite Z2-set(A, p).

1.2. Setof words

Let A be a Z2-set.Wedefine

w0(A):={~i},

w~(A):=A
T,for r>0,

w(A) : = U~
0Wr(A)~

We identify A with w1(A). The element(a1 , . . . , a) of W~(A)is denoted

simply by a1 - . . a~.The juxtapositiondefinesa multiplication w(A) x w(A) -÷

‘-~ w(A).The productof u andw is denotedby uw.

Let ~ ~ EA} be a set of letters.We define

= 1,

~w(r) for wEw(A).

Remark (1 .2.1). In explicit calculation,it is often confusingto expresswords

on A directly, e.g., when A consistsof numbers.In suchcases,it is convenient
to introduce letters indexed by A, e.g., { Za; a E A } andexpressa word w on A
by the correspondingmonomial zn’. For example,the word abbc is expressed
by the monomialZaZ~ZC~

Forw = (w(1),.. . , w(r)) E w(A) and it E ~2’ define

N(w, it) ={iEN(r); w(i)EAk},

2(w):= #N(w it),

11(w): = £~(w)+ = r.

Supposefrom now on thatA is totally ordered.
For w E w(A) with £r: =

11r~~’~>0, we denoteby í~the order preserving
bijection from N(2r) to N(w, 1).
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The permutation group ~r actson Wr(A) from theright by

w. it : = (i.v(itl ) ,.., w(itr)),

forwEw(A),irE S~.For(w,it)Ew(A)x S,define

1 if Q~(w)= 0,
sgn(w,it): =

sgn(p~ ~ ~f

By definition

sgn(w,it
1 it2 ) : = sgn(w.~1 ~ ~sgn (w, it1 )~

for wEw(A) ~r it ES
r 1 2 r

Define p0(A) : = w0(A ) and, for r >0,

~ :={wEw(A); w(1)~..

Put

= U~0 IT’(A).

Obviously we havethe following lemma.

LEMMA (1.2.2).

(i) Theaction (w, it) -~ w. it inducesa surjectionfrom ~‘r(A) x S to w(A).

(ii) The condition wit = w’.it’ for (w, ir). (w’, it’) E ~r(A) x S~implies w =

= w’ andsgn(w, it) = sgn(w’. it’).’ •

We definesw0(A) = w0 (A) and, for r> 0.

sw(A) = {w E w(A); ~{i; w(i) = a} ~ 1 for all a EA1}.

We put

sw(A) : = ~ SW(A),

= SWr(A) fl t~(A).

~A) : = s’v(A) fl V~(A).

1.3. Multi-indices

Define

m(A) :=Map(A, Z~).
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For p E m(A), we put

= ZaEA p(a),

= ~aEA p(a) mod 2,

p! :=IIEA p(a)!.

Weconsider m(A) as a Z2-setsby theZ2-grading p -+ ~i.
Define

m7(A):={pEm(A);IpI=r},forrEz+,

m(r)(JU :={pEm(A); IpI~~r},for rEZ~.

ForeachaEA, we define~a Em(A) by ~a(b) =

Definep:w(A)-+m(A) by p(~):=0 and

p(w) := ~ ~W(i

for w = w(l). . . w(2). Obviously p(w) j = 11(w).
SupposeA is totally ordered.

LEMMA (1.3.1).The restriction p ~(A) is a bijection.

We shall denotethe inverseof p ~A) by w: m(A) -÷

Suppose{Za : a EA } is asetof lettersindexedby A. For p E m(A), we define

= ~ Notethat this dependson the order of A if A1 is not empty.

Remark(1.3.2). WhenA is totally ordered,thebijection w from m(A) to i~(A)

enablesus to identify a multi-index p with themonomialzW~, when{za, a E A}

is a setof letters (cf. Remark (1.2.1)). For example, suppose A = { 1, 2, 3}with the

standardorderandx, y, z are letters corresponding to 1, 2, 3 respectively.Then a

multi-index m is identified with the monomial X
m ~ ym(2)~m(3)’ .

For p, p’ E m(A), we define theelementsp + p’ of m(A) by

(p + p’)(a) : = p(a) + p’(a),

for aEA.

Let Ibe a Z
2-set.Define

m(A, 1): = m(A)xl,

with the product Z2-grading. For M E m(A, I), we write its m(A) — and I —

componentsrespectively by p(M) and i(M). When I consists of a single even
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element,we identify m(A, I) with m(A).

We put

m(A,I) :=m(A)xI,

m(r)(A, I) : = m(~)(A)xl.

For p Em(A) and MEm(A, I), we put

p+M: =(p+p(M), i(M)).

For subsetsU of m(A) and V of m(A, I), we put

U+V:={u+v:uEU,vEV}.

Let be a subsetof m(A, I). For r E Z~, we define

Z) : = m(T)(A) +

We definea partialorder ~ in rn(A, 1) by

M<<M’~i(M)=i(M’) and M’E~ (M).

A linear order < < > in rn(A, I) is calledadmissibleif it satisfiesthe following

threeconditions:

(i) M.r(<M’ implies M<M’,

(u) M<M’ implies p+M<p+M’ for pEm(A),

(iii) every strictly decreasingsequenceof elementsis of finite length,
i.e., << < >> is a well order.

Example(1.3.~).SupposeA andIaretotally ordered.

(i) The standardlinear orderof m(A,I) is the pull backof thelexicographical
orderingof Z~x m(A)x Iby themappingM—~(~p(M)~, p(M), i(M)). Obviously

thisorderis admissible.
For example,supposeA = {1, 2, 3} with the standardorderandx, y, z are

letters correspondingto 1, 2, 3 respectively.Then the sequenceof elements
of m(A) in theascendingorder startsas follows (cf. Remark(1.3.2)).

1, x, y, z,

x
2, xy, xz, ~ 2 yz, z2,

x3, x2y,x2z, xy2, xyz,xz2,y3, y2z, yz2, z3,

(ii) Let << < >> betheorderof m(A, I) definedas follows:
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M<M’ if(a)jp(M)I<Ip(M’)I,

or (b) p(M) = p(M’) and p(M)> p(M’),

or (c) p(M) = p(M’) and i(M) <i(M’).

Obviously this order is admissible.

For example,supposethat A is as in (i) but supposethat the letters corre-

spondingto 1, 2, 3 are now Z, y, x. Thenthe ascendingsequencestartsas follows:

1,x, y, z,

~ y2, xz, yz, z2,

x3, ~ ~ ~3, x2~, x~z, ~ xz2, xz2, yz2, z3,

1.4. Super multi-indices

Let

sm(A) : ={ m E m(A);m(a) = 0 or I for a EAT},

sm(A,J) :=sm(A)xI.

We put

smr(A) : = mr(A) fl sm(A),

sm(A)() = m(r)(A) fl sm(A),

sm(A, 1): = mr(A, I) fl sm(A,I),

sm(A,‘~(r) : = m~~(A,1) fl sm(A,1),

sm(A,I)~2~:=m(A,I)~2~flsm(A,1).

Define for a subset of sm(A, 1) and r E

= ~(Z) fl sm(A,I).

The set p (Z) will be denotedsimply by p(Z) (cf. Example(6.1.2)).

For subsetsUofsm(A) andZ of srn(A, I), we write

U~~:=(U+ Z)flsm(A,J).

Then

~ Sm
0 (A,]).
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A subset of sm(A,1) is called an sm-subsetif

sm(A) ~1 ECZ,

i.e., p(~)C

Let w: m(A) -+ f~(A)be thebijection definedin the previoussection. Obvio-

usly we have

LEMMA (1.4.1). The restriction

sm(A) :s~n(A)—*sw(A)

is bijective.

§2. SUPERFUNCTIONS

2.1. Superalgebras

A Z
2-graded JR-algebra G = G0 ~ G1 endowedwith 1 is called a superalgebra

if

(1) ab=(—l)~ba

holds for homogeneous a and b. Here a= it for aEAK. Thereal field JR will be

consideredas a superalgebrawith lR~-= JR and 1R1- = (0). The G,<-componentof a

is denoted by a (it E Z2).

A Z-graded algebra G = ~ G., with 1 andsatisfying(1), where~ = i mod

2 for a E G1, will be considered a~a superalgebra by

G :=~. G. (itE~ ).
K zmod2’K z 2

Let G and G’ besuperaigebras.A homomorphism~ : G —~ G’ is an algebra

map such that p(l) = 1 and p(G~)C G~(it E Z2). A homomorphism G -~ JR
is called an augmentationof G. The pair (G, e) is calledanaugmentateasuperal-
gebra. An augmentedsuperalgebra(G, e) is called admissibleif (Ker 6)V = 0

for someNE Z.

Let G’ and G” be superalgebras.The Z2-gradedalgebra G defined by GK =

=~ ‘ ,, G’,®G”,, withthe product
K+l( K K K

(a’® a”)(b’ø b”)= (_I)aba~b~~,ahlbnF

is a superalgebra,called the tensorproduct ofG’and G”.
A superalgebraG’ endowedwith a homomorphismp : G -÷ G’ is called a G-su-

peralgebra.
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2.2. Supermodules

Let G be a superalgebra.Let V = V~~ VT be a Z2-gradedleft G-module.
The algebraG acts on V also from the right by ug= (— l)~gu. We say simply
V is a G-supermodule.

Let G’ and G” be superalgebras.Let V be a G’ supermodule.Then V® ~

is a G” ® G’-supermoduleby theaction

(f®g).(v®h) :=(—1)~f’ v®gh

(fE G’~g, h E G”, vE V). Similarly G”®~Vis a G”® G’-supermodule.

Let V = V0 e V1 be a Z2-graded JR-vectorspace.Then for a superalgebra
G, the tensor product G ® V is a G-supermodule,called a free G-supermodu/e
ofrank(r0 r), where : = dim~VK (it E Z2).

fhe superalgebraG is itself a G-supermodule.Its G-submodulesare called

ideals of G. For a subsetX of G, the ideal generatedby X is denotedby

G.X.

2.3. Free supermoduleswith ordered bases

Let G be a superalgebraand Va supermoduleover G
For a subset U of V, the G-submodulegeneratedby U is denotedby G. U.

Let I be a -setwith a linearorder << < >> and

V = e.EJG.e..

For v = ye. E V, we put

cf(i, u) : = V.,

pi(v) : = max{i; V~~‘ 0},

pt(v) : = v1e~ (i = pi(u)).

Let Wbe a G-submoduie.We put

p1(W) :={pi(w); wEW}CI

pt(W) : = G.{pt(w); w E W}.

Wesay W regular if thereexists

{w; iEpi(W)}CW

suchthat

pt(w1) = er
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2.4. Superspaces

Let A be aZ2-set. For a superalgebraG, we define a setA(G) by

A(G):={~:A-÷G; ~(a)EG~- for aEA}

We often write = ~(a). The correspondenceA : G H- A(G) is called the

superspaceassociatedwit/i the Z2-setA. ElementsofA(G) is called theG-points

of A. This is a covariantfunctor from the categoryof superalgebrasandhomor-

phisms to that of sets and mappings,i.e., eachhomorphismf : G —* G’ induces

a mapA(f): A(G) -÷ A(G’) definedby A(f)(~’)= f o ~‘ and satisfiesA(f o g) =

=A(f) o A(g) for anotherhomorphismg : G” -+ G.

Let U be open subsetof IRAr. For an augmentedsuperalgebra(G, e), we

define

AU(G):={~EA(G); eo~EU}.

The correspondenceAtJ : G H- AU(G) is called thesuperdomainofA with the

body U. This is a covariant functor from the categoryof augmentedsuperal-
gebrasto that of sets.NotethatA(IR) = R~andAU(JR)= U.

2.5. Superpolynomialalgebras

Let A be a Z2-set. Let IR{A} be the free associativeJR-algebragenerated
by A, i.e., IR{A} : = ~wEw (A 11R w, with the multiplication definedby

(EC’w)(~C”w)=~ (~ ‘ ,, C,C,,)w.
w w w w.w =w w w

Let JR[A] be thequotientof IR{A} by the two-sided ideal generatedby {ab —

— (— l)~’ba; a, b E A}. Let Z denotesthe class representedby a. Then we
haveobviously

PROPOSITION(2.5.1).

(i) Z~=sgn(w,ir)Z~’ for (w,ir)Ewr(A)x ~r’

(ii)

lR~Z~

— 11Esm(A)

Define,

~ for rEZ~,

for r<0.

Then IR[A] = ~ and ]R[A] is a Z-gradedalgebra.
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Define

JR[A]] :=H~~~IR[A],

whoseelement is called a formal power series of the variable Z and expressed

asf= ~LEsm(A)fvZP The algebra lR[A]] is a superalgebraby the Z2-grading

f=it.m’f~�0 only when ji=it,

and the multiplication h = f g, where

Let G be an associativealgebraandg : A -+ G a mappingwhich satisfies

g(a)g(b) = (— 1 )~ g(b)g(a)

for a, b E A. Then an algebra map evg : IR[A] -* G is uniquely definedby
evg(Za) = for a E A. For P E IR[A], we write P(g) : = evg(P). When g0, are

nilpotent,eug canbe extendedto IR[A]] in the obviousway.

Example(2.5.2). Let A = A0 = {x} and G = IR[B] with B = B1 { 01, 02~

63,04}. LetgEA(G)bedefinedby

g(0)=0102 + 0304

andput

P(x) : = exp(x) = XnE~ x~/n!E IR[A0]] = IR[x]].

‘Ihen

P(0102 +0304) :=P(g)= 1+0102+0304+01020304•

In particular,for a superalgebraG, thereis a map

P(G) :A(G)-+G

for P E JR[A] defined by P(G)(fl : = ev1.(P) for ~ E A(G). The correspondence
P : G H. P(G) is a natural transformation i.e.,for eachhomomorphismf: G —~ G’,

We havefo P(G) = P(G’) o A(J).

When A~-= ~, the algebra IR[A] is called the Grassmannsuperalgebraon

AT, which has a unique augmentation� defined by �(Z’
t) = 0 for p ~ 0. Ob-

viously Ker e is nilpotent.

2.6. Smoothsuperfunctions

For a set I, a subsetU of JR’ is calledaprimitive opensubsetif thereis a finite
subsetJ of landan opensubsetV of 1R~’suchthat
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U{~(~1)EJR’; ~J~=(~.;jEJ)EV}.

A function f : U —÷ JR is called smooth if there is a finite subsetJ’ suchthat
J C J’ C landf = go it for someg E C~(Ui,), where

~

and it : U —÷ U~ is a natural projection. The set of all smooth functions on U

is denotedby C°°(U).

Let A be a Z2-set. Let U be a primitive openset of JRAr. Let G be a superal-

gebra.We definea smoothsuperfunctionon the superspaceAU with coefficients

in G as an elementof the superalgebra

F~(AU):=G®w, C”~(U)®m IR[A1].

When U=IR’
4r, we write simply FG(A) =FG(AU).

Remark (2.6.1). One may assumeG = JR without the danger of losing the

essentialpoints of this paper.

Wewrite an elementfEFG(A”) as

— pESm(A-~-)’p

with f E FG(A~)= G ® C~(U).‘I’hen f is homogeneousof parity it if andonly

iffy + ~ = it for all p E sm(A
1).

A homomorphism4p : G -* G’ of superalgebrasinduces

F :=~®l :FG(AU)~FG,(AU).

If A’is a subsetof A, thereis a naturalinclusion map

:FG(A’)-+FG(A)

defined by

~Esm(A,’) fZ~) = ~itsm(A~) i(f)ZM,

where i : C~(JR~o) -+ C~(JRAF) is the map induced by the projection IRAr .~+

~

2.7. Partial derivatives

For a EA, wedefine

a=a/aZ :FG(AU)~FG(AU)

as follows: when ~ = U, we put
8a = ® öa ®l, where : C~(U) —~ C~(LI)
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is the usualdifferentiation. For ~ = 1, we define : = 1 ® 1 ® aa, where

IR[A1J —3-IR[A-1-] is definedby

aa(za(l) . . .Z(~))=~1(_ l)’
15 ~)Z(

1) ‘‘ ~a~) ~Za(p)~

Obviouslywe have

LEMMA (2.7.1).

(1) aOab = (— ~ ~a for a, b EA,

(ii) = sgn(w, ir)aw for (w, it) E w(A) x ~ ,.~

2.8. Taylor expansionof smooth superfunction

Let A be Z2-set and U a primitive open set of JRAS. For f= ~M”Esm(A~)

~

~ ~pEsm (A )(1/P!)af. 0 ~

= ~XEm(A r)~iiEsm(A1) (l/x!)axf ® ~

where ji’ = p A ~ ~“ = A1 Informally, f(y, Z) is the Taylor expansionof
f(y + Z~,Z1) at (y, 0) whereZK = (Za~~a E A). ‘Ihe correspondencer :fH-f

defines a homomorphism of superalgebrasr : FG(AU) -÷ FG(A~)0 IR[A]].

LEMMA (2.8.1).F0rfEFG (AU),

~a ol)f=(I ea~ =(aa1~ aEA~,

(1 ® ö) 1~~a~’ a EA1.

Proof. For a EAT, we have (1 ® a) o r = r o aa obviously.Let a EA~.Then

(3,~® 1) o T = T 0 aa obviously. We haveonly to checkthe equality (a~® 1)r =

= (I® 8a)r:

~a® l)f=~ (l/p’!)aa~”f. oZ~

~ >ia~’~f®Z~

= ~ (1/p’!)~’f,, ®

=(1 ®a)f. q.e.d.

Example(2.8.2). LetA~={x}, A-1- = {O, ii}and put

f(x, 9, i~)= x
20~.
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Then

I = x2 0i~+ 2x ox 0r~+ 1 ox2 0i~.

We have

(ago l)f=(l oa~)f~=(2xe0~f =2(x~0t~+lo0i~),

(lea
0)f=(xo~-,)~’=x

2®?1+2xoxfl_lOx2fl.

2.9. Value of superfunctions

Let (G, �) be an admissibleaugmentedsuperalgebra.Then a G-point ~ of A U de-
finesa homomorphism

ev~:FG(A11)-+G

as follows: Since : = � o ~ I A~E U, thereis a homomorphism

eu
1 :FG(A~):=GOC°~(U)-+G

definedby eu1(g®f) =gf(~0).Since~(a)— �(~(a))isnilpotent for aEA, a ho-

momorphism

ev2 =ev1 ~ :JR[A]]-+G

is defined.Define then eut :=lro(ev1 0eV2)or ,whereir :GOG—*G is the

multiplication map.

Example(2.9.1). Let A be the Z2-setof Example (2.8.2)andput

f(x, 0,’r~)=eX0i~.

Let G = IR[B] with B = B1 = { ~1’ ~2’ ~ ~ } and ~ = (~ ~ ~ ~4) be a G-point

of A. Thenthe valueof f and ~ is given by

~ 1~2~3~4~3~4 ~1~2~3~4’ U

§ 3. SUPERMAPS

3.1. Supermaps

Let A and I be ~2-sets. Let Ube a primitive opensubsetof IRAI. Define

FG(AU,I) :=I(FG(AU)),

whoseelementsare called smoothsupermapswith coefficientsin Gfrom4~to I

They aregivenby F = (F1 i El) with F1 E FG (A U).. When G = IR, we write sim-

ply F = F~.
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Suppose(G, �) is an admissibleaugmentedalgebra.Thenan element F of
FG(AU, I) induces

F :A~’(G)-’I(G)

by

F(~): = (F1(~);iEl) E 1(G).

When G is augmentedby e,the composition1(e) e F define C map F: U—’
..+ JRIF When V is an opensubsetof - 1R~,we put

FG(AUJ,II~’):rr{FEFG(ALI , i);F(U)C V).

3.2. Superalgebrahomomorphismsinducedby supermaps

Suppose(G, e) is an admissibleaugmentedsuperalgebra.ThenanFE
FG(AU, I) inducesa homomorphism

F*: FG(I) -‘ FG (AU)

definedas follows: Let ~ :FG(A
t’)-÷C~((f) bethe homomorphismdefinedby

~~izE5m(Ar) feZ’s) = (eoI)f
0.

Then (Ker E~’ = 0, for large N. Put

eF:=(~’F.; iE1~)EC00(U/~,

whichdefines (~F)*: G 0 C~’(lR’o) -‘ Ge C(U).

Define F — e~F: = (F1 — ~F1 i El) E FG(AU). Since its componentsare nilpo-
tent,this induces

(F_e’F)* :JR[l]1~~~FG(AU).

Finally defineF* : = ir o (( ëF)*)e(F — ~F)* o r, where ir : Ge C(U) OFG(ALT)

-+FG(A
t’) is the multiplication mapand G ®C~(LT)= FG(A~’)isregardedas a

subalgebraof FG (AU).

FG(f)~~+(GeC00(JR1E))e1R[J]]

F* J(~F)*e(F_~F)*

FG(AU) +~(GeC~0(U))oFG(AUt).

Note that F*Z
1 = F, (1 E I). When ~ is a G-point of the superspaceALE,

(F*f)(~)=J~F(fl).
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Example (3.2.1). SupposeI = I~= {x}, A = A1 = {0, i~},F~: = 0i~.Then
F*f=f(0) +f’(O)Orj, for an elementfofC~(JR).

PROPOSITION(3.2.2).For an element F of FG(AU,]), the identity

aa F* = ~,~1(a0F1)F o a1
holdsfor everyaEA.

For the proof, we needthe following

LEMMA (3.2.3). Supposethe componentsof H E FG(AU, I.) are nilpotent. Let

H* : lR[I]] _*FG(A(’) be the induced map. Then

a0 H * = ~,~1~01’1)H a1.

Proof. Let w E ~i(I). Define w E i~i.1(A) and w’E ~r_/C’U for I E N(r)

by w = ww(j)w’, and put w1 : = ww’E ~i3r 1(A). Then

(aaoH*)zw .aHW .~r( l)awHwi’aH(.)Hwi

= ~=~(— 1)wu)w~(aOHU))Hwi.

(a0H~)(H* a,) Z~ = ;(a0H1)H*(~ ~ ~~ l)Th, (J)Z~

= ~= (_ 1)~
1~V(aHU)~Hw!.

q.e.d. U

Proofof Proposition (3.2.2). Put F0 = ~F, F1 = F — F°. For aE A~,

and

a
0oF*=aoitoFo*®Fl*or

= ito (~0n I + 1 n ~0) o (F°
4®F1 *) o T

= ito {(~
1~1((a0F~)F~) OF

1*) (a. ol)

+
01(F~’® (a0 F~)Fl*)(1 ® a~)}~~

=~.(a0F~+aaF~)ito(Fo*®Fl*)or o a1

= ~.(a0F,)F* o a~.

Fora EA1 ,theassertioncanbe provedsimilarly. q.e.d.
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3.3. Compositionof supermaps

Let A1 (i = 1,2,3) be Z2-sets.Let (G, e) bean admissibleaugmentedsuper-

algebra.Thenwecan define

FG(A2, A3) x FG(Al, A2)H’FG(A ~,A3)

by (F1,F2)H-F1 ~F2, where

(F1 oF2) = F~’(F10),for a EA3.

Whenfor an elementF1, of FG(A1, A,) there exists an F21 EFG(A2, A1 )such

that F12 o F21 = idA , F21 o F12 = idA , thesupermap F12 is calleda superdif-

feomorphismfrom A1 to A2, andF21 is called theinverseofF12.

3.4. Lemmason regular ideals

In this subsection,we introducethe notionof regularityof idealsof thesuper-
function algebra,whenthe inuex set at tne coordinatesis well-ordered.Weprove

the existenceof the set of canonicalgeneratorsof suchideals.
First we prepairtwo lemmas.

Let A be a Z2-set andB its subset. Define E F(B, A) by = Z (a E B)
and = 0 (a EBc). We denote t*f (fE FG(A)) by f(Za = 0;a EBC).This is an
elementof FG(B) and henceof FG(A) by our conventionFG(B) C FG(A) (cf.
§ 2.6).

The first lemmais a weakversionof the ‘raylor theoremfor thesuperfunctions.

LEMMA (3.4.1). For fE FG(A),

ff(Z0 0; aEB
0)+ECEBCZOfa

where E FG(A). In particular

Kert*=FG(A).{Z; aEBC}.

Proof Writef as

~ E(x v)Esm (B~)xsm(Bf ) f~ZxZM.

Thenf canbewritten as follows:

f ~xEsm(B

1)~xO~ + ~aEB10 Z0f0,

wheref~ EGo C00(JR~),fEFG(A). By the usualTaylor theorem, we can ex-
press~ as

~ =f0(Z =0; aEB~)+~0~~Zf~0
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with f~oaEC~0(1R~~r).Hence

.t. ~xEsm(B
1)

1~X0~a = 0; aEB~)Z~’ + ~aEBC Zafa

=f(Za =0;aEBC)+~aEBCZafa,

where f
0 = ~XESm(B1)~X0o Z

1’ for aEB~-. q.e.d. U

‘Ihe next lemmadeterminestile quotientof thesuperfunctionalgebras by the

idealsof specialform.

LEMMA (3.4.2).LetB C A and p E FG(BC, B). Let4 EFG(BC, A) bedefinedby

~ =z
0 (aEB

0)and~~ 1°b (bEB). Then

(i) Ker ~i~’ is the ideal 5 generatedby {Za — b E B},

(ii) ~ inducesan isoinorphism FG ~A)/ 5— FG(BC).

Proof Define~4tEFG(A,A)by ‘4’=Z (aE BC) and ~ =Z~—p~ (bE

E B). Then‘I’ is obviously a superdiffeomorphism.Then ‘I’ o ~ EFG(BC,A) is

just the inclusion t. In fact, for a E BC

(‘1’ ° = = 4~*(Z ~‘b~’ ~‘b ~b = 0.

Hence

Ker 4~l’= Ker(t* (4~~’)*)

= qf*(Ker t*)

= ~*(F(A) .{Z b EB})

=F~(A).{Z~—p~bEB},

whence(i).Theassertion(ii) is obvious. q.e.d.

Wecall 11*f thefunction obtainedfrom f by thesubstitutions Zb = ~ (b E

E B) and denoteit by f(Zb = ; b EB).

Supposenow that the -set A is givena well-order.For a subsetB of A, we

define
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~ for bEB~,

F~°(A,B) :~{pEF°G(A,B); ~b EFG(Ab flB’~)forbEB}.

A subsetE of FG (A) is calledregular (with respectto theorder e < ,>), if, for

somesubsetB of A,

E=E(~p):={Z~—p~bEB}

with p E F°(A,B).~Theset B is called theset of principal indices of E and deno-
tedby pi(E).

Example(3.4.5). LetA~. = {x
1, X2},A-1- = {0~ ~02~03} withx1 <01 <02 <x2

<03W The setE: = {83 —x101x2,x2 —x10102}is regularwithpi(E) = {03~x2}

and can be written as E(p) with : = x1 01x2 and ~ : = x1 0102.Note that
this is not regular with respectto so~neotherorders,e.g.,x1 <x2 <01 <82 <03

Let B be a subsetof A and p an elementof F°~(A, B). The idealgenerated by
E(ço) will be denotedby Ideal(p).The idealsobtainedin this wayare called regu-

lar wit/i respectto theorder < < >>, or simply regular if it is clearwhich order is
relevant.

Note that the regularideal 5 generatedby the regularsetE in the Example(3.

4.3) can be generatedalso by the regularset E(l,L1) = {03, x2 — x1 0102). This set
of generatorshasthe remarkablepropertythat both and ~ depend neither
on 03 nor on x2. The next propositionshowsthat for every regularideal we can
alwaysselectsucha canonicalset of generators.

PROPOSITION(3.4.4).LetB bea subsetofa well-orderedZ2-setA and p an ele-
mentofF°G(A, B). Then

(i) there exists unique i~i EF~°(A,B) such that Ideal (p) = Ideal(~L’).

(ii) If l~°EF~(A,B) satisfies p~E Ideal(p) for b E B, then Ideal(p
0)= Ideal

(‘p).

Proof (i) We proveby inductionon b that for all b’ EB(b) thereexists1J1~, E

EFG(Ab) suchthat

(*) ‘b FG~) .{Z. pb’’ b’EB(1’)}

For b = mm B, it sufficesto put 1,IIb =
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Suppose for some b, the assertionis true for b’ EBb. Let c1 EFG(A” \B, A~’)

bedefinedby~ =ZaifaEBand~b=I/ib,forb1EAbflB=BbByLemma

(3.4.2),

FG(Ab).{Zb_~b; b’EBb} =Ker4*,

whencethe induction hypothesisimplies

FG(Ab).{Zb_~pb,;b’EBb} =Ker~*.

Let I/lb _~bp~.ThenZ ~b ~Zb ~b (mod.Ub<blb,),whence(*).

To showthe uniqueness,define‘I’ E FG (A \ B, A) by ‘J’ = Z0 (a E BC), ~‘b =

= ~b (b EB). Then

Ker\I/*=FG(A).{Zb_t/Ib;bEB}

=FG(A).{Zb_~ob;bEB}=Ideal(~p).

SupposeZb ~ E Ideal ~p) for some ~b EFG(A \B). Apply ‘Ps, then

~ =fb’

whencetheuniquenessof I/lb.

(ii) By (i). Ideal (~~)= Ideal (I/i
0) for some I/is E F~0(A,B). But Zb — I/i~ E

E Ideal (p) implies I/I~ = I/la -

HenceIdeal(p0) is generatedby Zb — ~ (b E B) andmustcoincidewith 1-

deal(p). q.e.d.

§4. SYSTEMSOF SUPERDIFFERENTIAL EQUATIONS

We define a system of superdifferential equationsas a set of superfunctions

on the <<jet superspace>.Two systems are called equivalent if they generate

the samedifferential ideal.

Section 4.1. introducesthe jet superspaceand the jet extensionmap, Section

4.2. definesthe notion of a system of superdifferential equationsand that of

its solutions. In Section 4.3 we define the notion of the regularityof thesystems

of super differential equations,when the sets of the independentvariableson

thejet spaceis givenan admissibletotal order.

Hereafter we fix an augmentedsuperalgebra(G, e) and omit the index LI

from various notations. For example,FG(A), FG(A, B) and F~0(A, B) will be

denotedsimply by F(A), F(A, B) andF°°(A,B) respectively,whereB is a subset

of a Z,-setA.
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4.1. Jet superspaces

LetA andJbefinite Z2-sets.Put

= ~ : = A II sm(T)(A~l),

~r :=F(Jr),

for r E . Wewrite J simply by J.

Let (G, e)be an admissibleaugmentedsuperalgebra.Fora subsetX of F(J), the

ideal F(J) . X will bewritten also by 5(X).

For W = (w, i) E w(A) x I, wedefineu~E F(J(A, 1)) as follows:

0 ifwEsw(A)C,

u~: = Z(,1 1) if w = w(p) (pE sm(A)),

sgn(W,it)Z(), ifw=~.it((~i2,it)Esw(A)x ~

Obviously u~ is well-defined.Moreoverthereis a superdiffeomorphism

UEF(J(A, I),A llsw(A,]))

defined by

U0 =Z, U~=u~ (aEA, WEsw(A,I)).

Informally speaking,(Z0, u~: a EA, W E sTi’w(A, I)) is anothersystem of co-

ordinateson J.
For any subsetB C J(A, I), define thejet extensionmap

1B :F(A,])-~F(A,B)

by

Z if bEAflB,(fB5) = b

aP(M)s.(M) if b=MEsm(A,l),

for s = (si; i El) E F(A, I). When B = J(A, 1), we write simply / =j~.

Example(4.l.l). Let A~:={x,y}, AT:={O,1~, I~-:={u}, If:={v}. Then

J(A, I) = A II sm(A,l) is describedas

J(A, flu- = {x, y, U iyf80i~’ Vxiyi8c7~d;

0 <a, b, c, d< 1, a + b and c + d + 1 is even},
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J(A,])r={0,n,u~jy/oa~b,VxlyjOc~d;

O<a,b, c, d< 1, a + b and c+d + 1 is odd}.

Thejet extentionmap j . F(A, I) -÷F(A, J(A,f)) mapsthe elementgiven by

u = p(x, 0), v = i/i(x, 0) to that describedby

Uxi.yIOa.,ib = a~a~a~a~p,ux,yjoa,~b = a~~

Obviouslywe have

LEMMA (4.1.2). For s E F(A,1) and (w, i) Ew(A) x I, thefollowing identity

holds.-

(/s)*u(~,, i) = a~’s
1 U

Remark(4.1.3). The spaceF(J(A, I)) canbeidentified with thespace of all

thedifferential operatorsfrom F(A, I) to F(A): In fact eachelementP ofF(J(A,
1)) inducesa <<superdifferentialoperator>>D~= D(P) : F(A, J) -÷F(A) by the for-

mula Dr(s) : = (/s)*P.

For example,when I = N(l 0), A = A0 = {x, y}, we have

D(u~)= a/ax, D(u~)(s)= (as/ax)
2,

D(u~z) = a2/ax2, D(u~~)= a2/axay.

Note that is linearif andonly if P is linear with respectto the variables in
sm(A,I).

4.2. Systemsof superdifferential equations

Hereafterwe fix -sets A and I We put~ = F(J).

By the Remark(4.1.3), the conceptof the generalsystemsof super differential

equations can be formulated as follows.
A subset ~ C FG(J(A, I)) is calleda systemofsuperdifferentialequationswit/i

coefficientsin G on the supermapsfromA to I. A supermaps E F(A, 1) is calleda
solutionof 8 if

(js)*E0, for EE8.

In otherwords s is a solution of ~ if andonly if s satisfiesall of the superdif-
ferentialequations:

D(P)s=0, for PE8.
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Theset of all the solutionsof 8 is denotedby Sol(8).

Example (4.2.1 ). Suppose G = ll~,A =N(014)

=~0i,02,03,04},I=N(lI0)={u}.

Then

8= {u0 02 + u0 ~ }

definesthe equation:

a
2u/ao

1ao2+a
2u/a0

3a84=0.

Since this is a linearequation,thesolution spaceis an IR—linearsubspaceof
IR[01,. . . ,0~]andisspannedbyl,01,02,03,04,0103,8104,0283,0284,

01 02 — 03 04 asis easily seen.

LEMMA (4.2.2). Let 8’ :={E~EE
8,KEZ

2}. Then

Sol( 8) = Sol( 8’).

Proof Obvioussince((js)*E)K = (/s)*E (,,~E Z2). q.e.d.

Hereafterweassumea systemof superdifferentialequations 8 consists of ho-

mogeneouselements.
Two systems8 1’ 82 C F are called equivalent if theideals generated by

them coincides.We denotethen 8 82~Obviouslyequivalentsystemshavethe
samesolution space.

4.3. Regular systems

Fix now a linear orderon A andan admissibleoneon m(A, I). Define a linear

order << < >> on J extendingthoseon A and sm(A, I) by a <M for a E A and

M E sm(A, I). Unless otherwisespecified,we assumethat the set sm(A, I) is
given the order (i) of Example (1.3.3) whenA and I are given linear orders.

Let be s subsetof sm(A, I). Recall that is a 7L2-set by the restricted

grading. A systemis called regular if it is equivalent to 8 (~p)for some and
p E F °(J, ~). The set is calledthesetof principal indicesof 8 , andis denoted

by pi( 8). Note that the notion of regularity dependsheavily on the choice of
orderson sm(A,I).

Example(4.3.1). LetA~-= {x, y}, AT = ~0, 77}, l=I~- ={u}. Let
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8={Ou +u
0 +f, rlu~+u,~+g),

where f and g are elementsof C~(A).We give the orderx <y < 0 < i~.If we
put = {0, 17} and define an element~ of F°(J, ~ = — 0u~—f and

p = — rlu~ — g, then 8 =

6(~p),and the system 8 is regular.Howevernote

that if we adoptthe order:x > y > 0 > i~,thenthis systemis not regular. .
By Lemma (3.4.2), we have

LEMMA(4.3.2). Let 8 be a regular systemof superdifferentialequationswith

= pi(8). Then there exists a unique i/i E F00(J, Z) such that 8 8 (i/i).

Furthermore, if cp EF°(J, Z) satisfies 8(p) C .~ - 8, then8 (~p)‘~ 8.

REMARK. The assumptionof regularity is not restrictive: If 8= ~Ip

1 , . . . . , p~}
and <<the symbol submodule at ‘~ E A(G)>> is regular of rank Q, then around

~, the system 8 is regular. This follows from the implicit function theorem

for the supermaps.

§ 5. FORMAL GROEBNERINTEGRABILITY

As in the previoussection,we fix finite Z2-setsA and I. We putJ~=Jr(A I)

and ~ = F(Jr)~ for r E Z~.Fix a linear order on A and anadmissible one on

m(A, I), and extendit to J as in Section4.3. ForM E m(A, I), we put ~-M:

= F(JM )~ .MI~ = F(J~~).Note that ~JI) = .]~ when M doesnot belong

tosm(A,I).

5.1. Extensionof partialderivatives

Fora EA, we define d : ~ = F(J~(A, 1)) -+ ~ by

daF = aaF+ ~(p,i)ESm (A ,I) U(aw (p),i) a(Ml)F,

for FE 3~.

LEMMA (5.1.l~.LetsEF(A,I).Then

(js)*dF = a0(/s)*F

foraEAandF E~.

Proof By Propositions(3.2.2) and (4.1.2),

(js)*d0F = (j5)*(ôaF + ~(~i) U(aw (/~),)a(~,)F)
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= ~bEA aOzb(/s)*abF + z(~i)aa(aMsi)(is)*a(vi)F

= ~MEJ(A flaa((/s)M)(Js)(aMF)

= a (/s)*F. q.e.d. U
a

LEMMA (5.1.2).Suppose(ji, M) E sm(A) x sm(A, I) satisfies p + MEsm(A,J).

Then

dM(.~M)C,~+M

Proof We mayassumep = ö0 (a EA). SinceM’ <M implies

+ M’ <~~a+ M,

the condition F E~Mimpliesd0F E ,~IO + M obviously.
q.e.d.

5.2. FormalGröbnerintegrability

Define for E C .~ and n E

By Lemma(5.1.1),Sol(
8) = Sol(p~(8)) for n E Z~.

DEFINiTION (5.2.1). A regularsystem8 is calledformally Grobnerintegrable if
p ( 8) is a regularsystemwith

pi(p,,~(8)) = p~pi(8)).

REMARK (5.2.2). We havealways

~ p(pi(8))

by Lemma (5.1.2). However the other inclusion is not necessarily true since the

ideal generated by p ( 8) may contain nontrivial compatibility conditions as is

illustrated by the following simple example. a

Example(5.2.3). Let A-~j-={x},A~={O},I=I.~j-={u}, 8={f: =0u~+u
0}.

Then 8 is regularwith pi(8) = {0}, andhencep~~~pi(
8)={fO; n E .~j. But

d
0f= u implies that x Epi(p( 8)), whence pi(p ( 8)) coinsides with sm(A)

and properly contains ppi( 8). In particular8 is not formally Grobner integra-

ble.
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I he main themeof this paperis to give various practicalsufficient conditions

for the formal GrObner integrability of regularsystems.
In the rest of this section we give sunpie rephrasesof the formal GrObner

integrability.

LEMMA (5.2.4).Let 8 = 6 (~o)with p EF°(J, Z). Put : = p(E). Choose,
for eachME ~, an element(p, M) ofsin(A) x suchthat p + M = M and put

M E~M
= PM ~. Then~PEF° (J , Z)and 8 is formally GrObner integrable

if andonly if p~( 8) is equivalent to its subset 8 (ö).

Proof If pj8) 8 (~), then 8 is compatibleby definition.
The conversefollows from the following lemma. q.e.d.

LEMMA (5.2.5). Suppose8 is formally Gröbner integrable. Let p EF
0~J, li) sa-

tisfies ~M E J(p (8 ))for M E ~. Then 8(Ip) is equivalentto p~(6).

Proof Let p( 6) ~ 6(~,1~) with I/i EF0(J, Z). Then 6(p) C .f (I/i), whenceby
(ii) of Proposition (3.4.3), we have S(p) = 5(1/1). q.e.d.

LEMMA (5.2.6). ForMEm(A, f)and 1pEF0(J, ~), the ideal of~

Ideal(M)(p) :=5(~)fl3~

is generated by { ZN — ‘~N’N E fl j(M )

Proof We mayassumep E F°°(J, ~). Define ~ E F(J, J) by ~N : = ZN

(NEZ~),ZN ‘0N ~NE~). Theinducedhomomorphism~ is an automor-
phism satisfying ~*,~(M) = ,~(M) ~ =ZN ~N (NEE). Hencewemay

assume~°N =0 for NE~. Let

f= ~NE~ fNZN E ~(M)

Sincef =f(ZL = 0, L >M), we have

f=~N~MfN(ZL =0,L>M)ZN

whichbelongsto theideal~ generatedby

{ZN;NE~flJ~M)}. q.e.d. U

COROLLARY (5.2.7). Let ~oEF0(J,Z) with ZCsm(A,f). If ~ be-
longsto 5 (Ip), thenf belongsto the idealgeneratedby
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{ZN_pN;NE_flJ}.

§6. CRITERIONS FOR THE FORMAL GROEBNER INTEGRABILITY

6.1.sm-subsetsof sm(A, I)

Let A and I be Z 2ets. Fix an admissible order << <> on sm(A, I).

For MEsm(A,I) and ZCsm(A,I),wedefine

Z—M: ={pEsm(A); p+ME ~}.

When is an sm-subset, —M is an sm-subsetof sm(A).
Let Z be a finite subsetof sm(A,1). Let be given a linear order <<<a. We

define theset ofmultiplicative indices

ml t(M) = ml t.~.(M)C sm(A)

of ME with respect to the order << < a asfollows:

ml t(M): =[{p,,,,{M’ EZ;M’ <M}—M}U {sm(A, ft _M}~C.

The obviously the complement ml t(MY is an sm-subset.
Define

ml t(A, Z): = {(p, M) Esm(A,Z); p Em! t(M)).

By the definition of ml t(A, Z), we have

LEMMA (6.1.1).
(i) The map (p,M) i-* p + M inducesa bijection vfrom ml t(A, Z) to p(E)

(ii) For (p,M)E{mlt(A, Z)}c wit/i p+MEp,,~(Z),letv’(p+M)=(p’,M’).
ThenM’<M. U

Example(6.1.2). LetA~= {x, y}, AT = /0, r~},I = N(l 0) and identify sm(A,

I) with sm(A).Let

xy, x
20,ri}

andgive the order:

x3 >xy>x20>~.
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Then

{ml t(rl)}C = P{77}

{ml t(x
26)}~rp /77, 0},

{~nlt(xj~)}C= p/i?, xO},

{ml t(x3 )}C = P/i? 0, y},

andhence

ml t(77) =sm{x,y, O},

ml t(x20)= sm{x,y~,

n2lt(x~)={j,aoxa;,b;abE~~},

nil t(x 3) = sm{x/.

We havethe following disjoint union decomposition:

= - ml t(77) II x2 0 - ml t(x20) II xt - ml t(xy) II x3 - ml t(x3).

Here we denotedmultiplicatively thesetgeneratedby subsetsS
1 andS3 of

sm(A) by S1 - S2.

Let F C sm(A) be a subset.An element ‘y of F is calledprimitive if ‘y doesnot

belong to p,,~(F \ { y}). Let prim(F) denotethe set of all the primitive elements

of F. As is easily observed,the subsetof sm(A) generatedby a subsetF is also

generatedby prim(F).

For an sm-subset Zof sm(A), the setprim(Z) will be denotedby Basis (Z).

Example(6.1.3). Let A be as in Example(6.1.2). Then

prini(/x2,xy
4,y3,077,x377})={x2,y3,877}. •

PROPOSITION(6.1.4). Thesetprim(F) is afinite.

Proof For everypairy, y’ Eprim(F), neithery ~ ~‘ nor 7’ ~ 7 is true.

Hence by Theorem of Riquier (cf. p. 147 of [Ritt]) mustbea finite set. q.e.d.a

Example(6.1.5). In the Example(6.1.2), we have

Basis({ml t(77)}C) =
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Basis({mlt(x
20)}0) = {~ 0},

Basis({mlt(xy)}c) = {r~,xO},

Basis({mlt(x3 )}C) = {77, 0,y}.

A subset of sm(A,I) is called l-acyclic if Basis({mlt(A, ~)}0) C sm
1(A,Z).

The following is obviousfrom the definitions;

REMARK. The term <<acyclic>> comesfrom the fact that if is 1-acydic,then
the <<super Koszul cohomologya of the sm-subset generated by (Z~ a E Z} is

trivial.

PROPOSITION (6.1.6).
(i) A subset of sm(A, I) is l-acyclic if and only if for every elementM of

it, thereexistsa subsetAMof A such that ml t(M) = sm(AM).

(ii) If~ is l-acyclic, then

= HMEE(sm(AM +M). •

Example(6.1.7). Let A and I be as in theExample(6.1.2). Let

:={x
3,xy,x0,~.}

with the orderx3 > xy > xO >~. Thenthis is l-acycic. In fact

Basis({mlt(n)}c) = {~}

Basis({mlt(xO)}1’) = ~

Basis({ml t(Xy)}c) = {~ 17}

Basis({mlt(x3)}0) = {0,~,y}.

The multiplicative sets are described as follows:

ml t(77) = sm{x, y, 0},

ml t(xO) = ml t(xy) = sm{x, y},

ml t(x3) = sm{x}. U

6.2. Precompatibility

Let Z be a finite subsetof sm(A,1) and6 6 (v,) for some~ EF°(J~, ,~).
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We give a linear order which may not be the restrictionof that of sm(A, I).

Let ml t(M) bedefinedwith respectto this order.
We denotep (Z) by ~. For each element M of Z, put

~

‘M

j~f M~M’

where(p, M) = V
1M E ml t(A, E) (cf. Lemma(6.1.1)).

DEFINITION (6.2.1). A systemof superdifferentialequation8 is calledprecompa-

tible if

d~~ME 5(~)

for all (p, M) E Basis ({ml t(A, Z)}0), where

U

Note that this is a finite number of conditions by Proposition(6.1.4). The

following exampleg~vesan exampleof systemsof superdifferential equations
which arenot precompatible.

Example(6.2.2). Let A~= /x, j’>>, AT = {O}, I = J-~- = {u}.Introduce theorder

0 > x > y andgive sm(A, I) = sm(A)the standardorder (cf. beginningof Section
4.3). Let = /0, i’}and p EF0(J, Z) be definedas

~o
0=~-u~+f(x,y,0,u).

p~=g(x,y, 0,u),

with f, g E C~(AH I). The system 8 (p) is the following systemof equations

au/ao + oau/ax =f(x, y, 0, u),

= g(x, .y, 0. u).

Define in Z the order~‘ > j’. Then

{ml t(0)}c = ~ {0},

{iiil t(i:)}c = p{O}

p(s) =p {O,77} ={0x~yb, x0y~l; a, b>0}.

Hence

Basis({ml t(A, Z)}c) = {(0, 0), (0, v)} C sm(A) x Z.

On the other hand,
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ml t(0) = ml t(y) = sm/x, y},

~={0x0y~2, x”y1’~~a,bEZ~},

and

hlIox�lyb Uoxoyb +d~4(0u~_f),

1/’~ay~1 =uxayb+l —d~d~g.

Thus 6 (~p)is precompatible if andonly if d
0(u0 + 0u~— f) and d0 (u~— g)

belongsto theideal 5 (~).However,we havemodulo5 (~)

d0(u0 +0u~—f)~u~—(0f~+4 —ff~~~

d0(u~ —g)~fT~,— ~ _0g~—g0 —f~

whence the equation I (~p)is not precompatible. •

For NE ml t(A, I), let Ideal~ )(~) be the ideal of S~(N) generated by {
1/’M

M <N}. Since d” ~M E ,~(v+M) Corollary (5.2.7) implies the following lemma.

LEMMA (6.2.2). A system I is precompatibleif andonly if

dv1/IM EIdeal~~~M)(~)

for all (p1, M) E Basis({ml t(A, ~)}C) U

6.3.FormalCartan-KählerTheorem

Let bea finite subsetof sm(A, I) and I = I (~p)for some ~ EF°(J ,~).

THEOREM(6.3.1). The system I is formally Gröbner integrable if and only if it

is precompatible.

Proof We usethenotationsof the previoussection.Suppose I is formally

Gröbnerintegrable.Then p( I) 8(p), where ~ E F°(J,~,, Z) is the element

definedin the previoussection.Then

d~’111ME ~~(v+M) n 5(~) = Ideal +M)(~)

by Lemma (5.1.2).

Conversely suppose I(ço) is precompatible. We prove by induction on (p. M) E
Esm(A, Z),that

dv1/.,M EIdeal(v+M)(~).
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Here the order of sm(A, Z) is the pull-back of the lexicographicalordering

of sm(A, Z) x by the map (p. M)I-* (p + M, M). This orderis obviouslyadmis-

sible.
For the minimal element(0,M0) (M0 : = mm Z) andfor (p. M) E ml t(A, Z),

the assertion ~
1~vM is trivial. For (p. M) E Basis({ml t(A, Z)}C) the assertion

is valid by the precompatibilityof I.

Let (~M) E ml t(A, Z) U Basis({mlt(A, ~~)}C)

Suppose~ is valid for (p, M) < (ji, A?). There exist X, p E sm(A) such

that (p, M) E Basis({mlt(A, ~)}C) andX + p = ~i.Then

d~’1/í~ EIdeaI(~M)(~).

It sufficesto show

d” 1deaI~+ M)(~) C Idea1~+ M)(~)

for which we haveonly to show

dX1/IN E Ideal(~M)(~),

for NE~~M). Let ~r1(N)= (p’, M’)Emlt(A, Z). Then

~ N

We have (p’, M’) < (p, A?).

In fact (i) if N <p + M, then p’ + M’ = N <p + M, whence (p’, M’) <(ji, M).

(ii) Suppose N =p +M. SinceM’<Mand ~i’ +M’ =Np +M,wehave(p’M’)

<(p, A?). Hence(X + p’, M’) < (X + p, M) = (~ M) in any case.Therefore

dX1/IN =dv1/IMEIdeal(>M+M)(~)CIdea1(M.M)(~)

by the induction hypothesis. q.e.d. •

6.4. Involutive systemsof superdifferential equations

Supposethat a regular systemis homogeneous,i.e., its principal index set
of a regular system lies in sm~(A,I) for some r E Z~andthat Z is l-acyclic,

i.e., the nonmultiplicative set ml t(Z)c is generated by elements of degree 1.

Then the precompatibility of I can be rephrased in a different way, close to

theclassicalinvolutivity.

DEFINITION (6.4.1). A regular system I is called involutive if the following

threeconditionshold.
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(i) :=pi(6)Csm(A,1),

(ii) is 1-acyclic, i.e., Basis(mlt(~)’~)C sm
1(A, 1),

(iii) I is precompatible.

SupposeZ C sm(A, I) andZ is 1-acycic. Let I = I (~p)with ~ E F(J, Z).
Define 11 E F°(J, p (Z)) and 1/i E F(J, p(Z)) as in § 6.2. Put

~~(8) :={I/1N;NEP1(_)}.

Then under the conditions (i) and (ii), the precompatibility canbe rephrazed
as follows:

PROPOSITION (6.4.2). Suppose C sm~(A,I) is 1-acyclic and let ~ E
The regular system I = lip) is involutive if and only if ~ ( I) and p1 ( I )

generatethesameideal of~~+i.

Proof By the 1-acyclicity of E,

{ml t(A, Z)}’~fl Sm1(A, Z) = Basis({mlt(A, Z)}c).

SupposeI is involutive. Then for (a, M) C sm1(A, E),

d I/fM E Ideal(~).

Then,by Corollary (5.2.7),dGi/JM is in the ideal generatedby p~(I).

ConverselysupposedaI/IM E 3Fj .p1(8) for (a,M)Esm1(A,Z).Then dCcIIME
E Ideal(~)for a E Basis({ml t(M)}c), whence I is precompatible. q.e.d.

6.5. Good involutive systemsof superdifferentialequations

Since the 1-acyclicity of subsetsof smr(A,I) is ratherdifficult to check,we
give a practical sufficient condition for a subsetZ of sm(A, I) to be 1-acyclic.
We note that whenAT is void, this conditionholdsfor <<generic>>regularsystems

of differentialequations.
Let << < a be a linear order on A. This inducesthe following partial order,

denotedagain by << < a,on sm(A,I):

M <M’ ~ M’ = — + M for somea, b EA with b <a.

Example.Let AT ={ x, y}, AT = 0,77 with x >0 > y >77.

Then on sm2(A, I), the induced partial order can be depicted as fol-
lows:
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X77

/\
xJ\ /077

x xO Oj; j’ -

wheresmallerelementslie right to largerones. U

A subset of sin~(A.I) is calledgood if thereis alinear orderc < >‘ on A such

thatM C impliesM’ C for all M’ C sm(A, I) with M’ >M.

For p C m(A). define

c(p) : = mm/a CA; p(a)vi 0/

andcall it the c-lass of p. Define

A(p) : ={a CA: a> c(p) or a =

LEMMA (6.5.1). (InC the restriction of the standard ordering of (i) ofExample

(1.3.3). 1f~C SI11r(A~1) is good, then,forM C

(i) Basis(/nil t(M)}~)= A(p(M)),

(ii) nil t(M) = sin (A(p(M))C).

Proof. Fix M C andput A : = A(ofM)) for brevity.Put c =

First we showAC {ml [(~)}C

Supposea > c. If a C A
1 and /1(M)(a) > 0. thena C {mlt(M)}c by definition.

If a CA1 andp(M)(a) = 0 or a C AB. then ~a ± id = ±M with M’ = M +

— C ~. Siflceit!’ <M. we havea C /ml t~M)~.
Supposea = c C A1 - Thena is in the set in! t(M)}c becauseof p(M) (c) > 0.

fius we haveprovedA C { in! r(M)}c. whichml plies

/nzl 1(M)/c D p (A).

Next we showthat

(2) ml t(M)~C p (A).

Supposep doesnot belongto p (A), which means

(3) p~a)=0if a>c or a=cCA1.

We show that p + Al doesnot belong to p (ZM) Then p belongsto ml 1(M).

Hence(2). Supposethecontrary:p + M C p (ZM). Then we have

p + M = ~ + \T
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for some v E sm(A) andN C EM We shall show that this implies p(N) ~

whencep(M) = p(N) becauseof p(N) = p(N) . This is acontradiction.

SinceN <M, we havec(p(N)) > cand

p(M)(a) = p(I\J)(a) = 0 for a <c

and

p(M)(c) ~ p(N)(c).

For a> c, theassumption(3) implies

p(M)(a) = p(a) + ,u(N)(a) > p(N)(a).

Hencewe have proved {ml t(M)}c = p~(A(p(M))), which is equivalent to the

assertion(ii). The assertion(i) follows obviously from (ii). g.e.d. U

COROLLARY (6.5.2).IfE Csm~(A,1) is good, then itis 1-acyclic. a

Let be a good subsetof sm(A, I) with respectto alinear orderof A. We

give to m(A, I) the ordering in (ii) of Example (1.3.3). Let I = I (~) with
p C F°(J , E). Thenext lemmagives an explicit descriptionof thesubset~

of p1 (8) definedin theprevioussectionwhen is good.

LEMMA (6.5.3).

i5~(I)= lU/a’ i/fM; MCE, aEA(p(M)Y~}.

Proof By Lemma(6.5.1), ml t(M) = sm(A(p(M))c). Hence

= EU ~ +M; aEA(p~M))C}.

This implies

~5+Mda~M~ a+M~~M

and

= IU{VI6 +N’ aEA(p(M))c}

= 8 U {d~,; a EA(p(M))C}. q.e.d. U

Now we can rephrasethecompatibility of regular systemsof superdiffe-

rential equationswith good principal index set in a style close to the classical

involutivity.
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PROPOSITION (6.5.4). SupposeZ is a goodsubsetof sm~(A,1). Let I = I (p)

with p E F°(J, Z). Then I is involutive if and only if for aiiM E and a C

EA(p(M)),

dVIMasO (mod /f~(l)).

Proof Obviousfrom Proposition(6.4.2)and~Lemma(6.5.3). q.e.d. U

REMARK (6.5.5). When Z C Sm (AT, I) or EC sm(A-
2-, I) it is possibleat least

<<locally>> to make a linear changeof coordinatesso that a regularsystem I with

pi( I) = turns out to havea good setof principalindices. This statementdoes

not seemtrue for general

§7. SYMBOLS

We fix as beforeZ2 -setsA and land anaugmentedsuperalgebra(G, e).

7.1. Involutive submodules

Let E = ~IEJIR e~be the Z2-gradedIR-vectorspacewith the parity ~ =

For a superalgebraF, the tensorproduct

lR[Atø~ E®11~,F=e~E~R1[A}~ E®~F

will be consideredas a Z-gradedsupermoduleover the Z-gradedsuperalgebra

IR[A] n F : = n. IR.[A] ®F. We put W : = Za ® 1 E 1R[A] ® F (a EA)and

eM : = w’
1e~(M = (p. i)Esm(A, I)). As an F-module

IR[A] eE®F= aM (Al)” eM.

We assumethat sm(A, I) is endowedwith an admissibleorder << < a, and use

the notations of §2.3 for the F-module IR[AI ®E ®F.

Let S be a regular F-submoduleof IR[A] ®E ® F and its principal index

set. We call S involutive (with respectto the order << < a) if

(i) is 1-acyclic,

and

(ii) pt((IR
1 [A] ® F) . S) = (JR1 [A] a F) . pt(S).

We note that generally the right hand side of (h) is a proper subsetof the

left handside,as the following exampleshows.

Example (7.1.1). Let F = IR, A = A1 /x, y}, with the orderx > y and
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I = IT = {u}. Identify sm(A, I) with sm(A) = m(A) and give it the order in (i)
of Example (1.3.3). Let

S= IR.(x2 +y2)OJR.xyC 1R
2[A}.

Thenpi(S) = {x
2, xy} is good andhence1-acycic.Further

pt(S)= JR x2 + JR xy

and

(1R
1[A]). pt(S)= JR ~x

3 + JR .x2y + JR .xy2~

But

JR
1[A].S={x

3, x2y,xy2,y3}=pt(JR
1[A].S),

whence the left hand side of (ii) properly includes the right hand side in this

case. U

REMARK (7.1.2). (i) WhenA = A1 andI = Ifl-, anF-submoduleSof F nJR[A] ® E
is usually called involutive if the Koszul complex associated with the F[A]-
module S is acyclic (cf. [5] for example). it is not difficult to see that if S is

involutive in the usual sense,then, by a suitable linear changeof coordinates,

the principal index set pi(S) C smr(A. I) is good and hence 1-acycic and the

condition (ii) is also satisfied,i.e., S is involutive in oursense.Converselyit is

easy to prove that if S is involutive in our sensethen it is involutive also in the
usualhomologicalsense.

(ii) lt canbe shownthat if S is involutive then

pt(IR~[A]®F) . S)= (JRrE~’h1aF) .pt(S)

for all r. Note incidently that this meansthat if {s~X E A/is an F-basis of S
such that {pi(s~); X E A} = pi(S), then {s~X E A} is a Gröbnerbasis of the

sub IR[A I aF-moduleof IR[AIl aF a E generatedby S. U

7.2.Symbol modulesof systemsof superdifferential equations

Weusethe notationsof §2.2 and §7.1. For r E Z we define

by

u(F) = ~MEsm~(A .1) eM ®aMF

Example(7.2.1). Let A1 = {x, y}, A1 = {0, n}~ I = ‘1 = {u} and identify
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IR[A]®E with R[A] by fau~+f(fC1R[A]).Then
a (Ott u

2 +u u u)
2 xy O~ xO y’r~

=xyaOu~+2077®0uu
0 +xO®Ouu—y77®0u00. •

Obviously we have

LEMMA (7.2.2).

(i) Ker a =

(ii) °~(‘ç)= ~‘~‘ e~,for w = (w, i) C w(A) X I,
(iii) cj(FG) = a(F)G + Fa(G) for F, G C .~. •

The following lemmagives the relation between
0r+ and

LEMMA (7.2.3).

u(d’~F~= ~~j(F) for pCsm(A) and FC~

Proof We may assumep =

1 ~ = 0r+ 1 (a,i)Esm (Al) 0(aw (~),i) a(~
1)F)

= ~MEsm~(A ,1) ~aCM ® F = ~aUr(F)~ q.e.d. a

Let 8 C ~r be a systemof superdifferential equations.Let ~ be thequo-

tient algebraof ~ by the ideal generatedby I - Let T : ~ be the pro-

jection. Put

~

Then

ö(lzg) = T(h) r(g)

forhC ~ .1 andgC5,whence

Symb~(l):=~(,~. 8)

is an .~-submoduleof IR[A] aE a .~, which dependsonly on ‘~r . I . This

is called thesymbolmoduleof 8.

7.3. Condition of involutiveness in terms of symbol modules

Fix an admissible linear order on sm(A, I). Let I be a regular system and

putZ=pi(8)Csm~(A,I).



COMPATIBiLITY OF SYSTEMS OF SUPERDIFFERENTIAL EQUATIONS 211

THEOREM (7.3.1).A systemof superdifferentialequationsl is invoiutiveif and

only if thefollowing two conditionsaresatisfied:

(i) Symb(8) is involutive,

(ii) ‘~r+1 Pi(I)fl~r~9r~8

Proof Let 8 = I(~p)forsome~cCF°(J,E).

Suppose 8 is involutive. By Proposition(6.4.2) we have for ~~a’ M) C Basis

(mlt(A, E)’~

(5) dVIM C ~

(cf. §6.4 for thenotation j5~(8)), which implies

(6) daVIM = ~
NEp, (~)

with CN C ~ and CN C .~ for N C sm~ 1 (A, I), by virtue of Lemma (7.3.2)

below.

Put

p~(E):=p
1(Z)flsm~ 1(A, n

LEMMA (7.3.2).Suppose

VI = C0 + ~NEsm~+ (A .1) CNZN

with C0, C~,C .~ belongsto ‘~ + 1 ‘~ (I). Then

C iii~NEp,(Z) N N’

with

C ~r for NCp~(E)

and

GNCJ+~M(AI)~r~ZM for NCE.

Proof Obviously, moduloan elementin ~NEpo ~ ‘ 1/fAT, we have

VI~VI0 :=C~+~NEsm(AJ)\()C~rZN

with C~,C~C ~. By Proposition (3.4.4), there exists~ C F
00 (J

1, p1 (E))
suchthat I ~ (p)) 8 (~).Make now thesubstitutions

for MEp1(E).
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Since C I (~ (p)), we haveby Lemma(3.4.2),

I _~“ E C”Z
~‘0 0 N N N’

whereG’ = C(ZM= ~M;M CE). Since 1 and/ZN;NEsm~1 (A, 1)/arelinearly

independentover .~r;~weobtain C~’, C~= 0, whenceC~, C~, E ‘~. . I. ‘Ihus

VI
0 EMEE~OMVIM + EN C~MVIMZN) = EME.. CM VIM

q.e.d. a
Applying

07H. 1 to (5), we obtain

= ENEPO~ C~,cs~l~N~ + ENE_Ur+ 1

where we note that 0r+ l(CA,) = 0 for NE p?(E). For N C p~(Z),thereexists

by definition a unique (öb, L) C ml t(A, Z) suchthat + L = N and I/iN =

= db ~L Hence

~a0r~M) = E(
5 L)E lt(A )CN~ba(VIL)+ ENEa~+I (CN)VIN.

Considering in IR[A] a E a ~+ 1 ‘~r+ 1 ~1, we obtain

~aUr~M) = E(Ib,L )Em lt(A

This is anidentity in IR[A] a E a .9~andimplies

1R1[A].Symb(l)= a
(~~,L)Em1t(A~ T r

whence

pi(1R1[A] . Symb(l))= sm1(A, 11) ~

whichmeansSymb(I) is involutive.
As to (ii), the Corollary (5.2.7)implies

~ =E/
,~ .~

r

whence(ii) is true.

Converselysuppose(i) and (ii) are true. Since

Symb(l)=a~0..~~.b~ (bM UT(VIM)),

(i) is equivalent to

1R1[A]. ~

wherebN = ~bbL for N = + L with ~

1b’ L) C mlt(A, Z). Hencefor (a, M) C
EBasis(nj t(A, flC)
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(7) ~bM = ENEPO (Z) CfilbN.

ChooseCN C which representsCN. Then

al(dI/IM _ENEPO(z)CN1/fN)

= ~a0r~1M) — E(5b,L)Em lt(A .1) b + L

Since the projection from 1R[A] a E a ‘~r+ 1 to IR[A] ~ E ~ ~-+ annihilates

the left handside by (7), we have,

dal/IM_ENEp0(_)C’NI/IN =EME (AI)~’MZM +C’0

with GMC .~ . I, ~0 C .~. Since

CC~fl~ p(
1)0 r r±1 I

we have C
0 C ,9 . I. Hence

dOI/IM C

HenceI is involutive. q.e.d. U
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